Medicinal Plants
Mina Bagheri; Mohammad Hassan Rasouli-Sadaghiani; Esmaeil Rezaei-Chiyaneh; Mohsen Barin
Abstract
Introduction
The use of intercropping and the potential of microorganisms such as Arbuscular mycorrhizal fungi (AMF) and Plant growth promoting rhizobacteria (PGPR) is one of the important strategies in sustainable agriculture. Intercropping is multiple cropping systems, in which two or more crop ...
Read More
Introduction
The use of intercropping and the potential of microorganisms such as Arbuscular mycorrhizal fungi (AMF) and Plant growth promoting rhizobacteria (PGPR) is one of the important strategies in sustainable agriculture. Intercropping is multiple cropping systems, in which two or more crop species planted simultaneously in a field during a growing season. Of course, this does not mean that in the intercropping, plants can be planted at a time together, but is the purpose that two or more crops are together in one place, during their growing season or at least in a time frame. Therefore, it is possible that plants are different in terms of planting date, and a plant is planted after the other plant. Potential benefits of intercropping are such as high productivity and profitability, improvement of soil fertility, efficient use of resources, reduction in the damages caused by pests and weeds, better lodging resistance and yield stability. On the other hand, the use of AMF and PGPR as biofertilizers can play a role in improving plant nutrition, plant growth and product quality. The aim of this study was to study the effect of AMF and PGPR inoculation on plant growth indices in bean-Moldavian balm intercropping.
Materials and Methods
This experiment was conducted in the Agricultural Research Greenhouse of Urmia University, Located in 11 kilometers Sero road of the city of Urmia, Iran (latitude 36° 57′ N, longitude 45° 24′ E and 1321 m elevation) in 2017. The climate of the area is a Hot-summer Mediterranean climate bordering continental climate with cold winters, mild springs, hot dry summers, and warm autumns. This experiment was carried out in a factorial based on a randomized complete block design with three replications. The factors including microbial inoculation {(AMF, PGPR, AMF+PGPR and without microbial inoculation) and planting patterns (Sole cropping of Moldavian balms and bean, 1 row bean+ 1 row Moldavian balms (1:1), 2 rows bean+ 1 row Moldavian balms (2:1), 1 row bean+ 2 rows Moldavian balms (1:2) and 2 rows bean+ 2 row Moldavian balms (2:2)}. For this purpose, soil samples were prepared from Naqhadeh city in West Azerbaijan Province in Iran. In order to greenhouse tests, the soils added to the pots (in each pot containing 45 kg of soil). In treatments, soil used with microbial inoculation. Microbial strains were used for microbial inoculation including PGPR (P. aeruginosa, P.fluorescens and P. putida) and AMF (Funneliformis mosseae, Rhizophagus irregularis and Claroideoglomus etunicatum). For plant cultivation, been (Phaseolus vulgaris L.) and moldavian balms (Dracocephalum moldavica) seeds cultivar were grown in pots. At the end of the growth period, the characteristics of the agronomic traits in the bean plant were including plant height, number of seeds per pod, 1000 seed weight, biomass yield and Seed yield, and in Moldavian Balm were including, plant height, biomass yield and essential oil percentage were determined. In addition, the land equivalent ratio (LER) was calculated to determine the advantages of intercropping. The analysis of variance for the obtained data was done by statistical analysis system (SAS 9.4) software. The mean comparison was done using the Duncan test at the 5% probability level.
Results and Discussion
The results showed that the different intercropping and microbial inoculation had a significant effect on all traits, in Moldavian balms and common beans. All the plant growth indices in common bean-Moldavian balm intercropping were the highest in the combined treatment of AMF +PGPR, compared to another treatment. The highest and the lowest seed and biomass yield of bean were achieved in sole cropping with 3.20 and 9.70 g and 1:1 with 1.57 and 4.41 g, respectively. The maximum biomass yield and other traits of Moldavian balm obtained under sole cropping, while essential oil percentage was higher in all intercropping patterns than in sole cropping patterns. The main constituents of Moldavian balms essential oil were Geranyl acetate, Geranial, Geraniol and Neral. The highest LER value (1.67) was obtained from 2:2 intercropping in PGPR inoculation.
Conclusion
In general, the results showed that all of the plant growth indices of Moldavian balms and bean in sole cropping were higher than other intercropping patterns; however higher LER was observed in intercropping with microbial inoculation. This shows more exploitation of unit area in intercropping. In addition, the greater amount of LER in replacement intercropping than additive intercropping highlights the necessity of appropriate density of plants per unit area in the intercropping. It can be concluded that application of intercropping with combined application of AMF and PGPR leads to improvement on yield and yield components of plant.
Soheila Rakbar; Zohreh Jabbarzadeh; Mohsen Barin
Abstract
Introduction: Gerbera is one of the most important cut flowers in the world and belongs to the Asteraceae family. Due to its diverse and adaptable species for growth with a wide range of climatic conditions, this flower has become a profitable cut flower for growers. Polyamines in plant tissues act as ...
Read More
Introduction: Gerbera is one of the most important cut flowers in the world and belongs to the Asteraceae family. Due to its diverse and adaptable species for growth with a wide range of climatic conditions, this flower has become a profitable cut flower for growers. Polyamines in plant tissues act as a potent factor in preventing the production of ethylene. Polyamines and ethylene have antagonistic effects (anti-aging and aging effects), so that the balance of these two hormonal groups in plants is very important for plant tissues. The balance between the two opposing regulators leads to a delay or acceleration in the aging process. Mycorrhizal fungi can be useful in hydroponic greenhouse systems, which increase the amount of CO2 in greenhouses by increasing photosynthesis in plants, as well as CO2 emissions in the control environment, which both optimally manage the environment and increase the yield and quality of plant products. Due to the economic importance of cut flowers, it seems necessary to provide treatments (such as the use of putrescine and mycorrhiza) to increase the quality and longevity of this plant. Materials and Methods: This study was conducted in the research and production greenhouses of Urmia University and the research laboratory of the Department of Horticultural Sciences of the Faculty of Agriculture in 2019-2020. This study was performed as a factorial experiment in a completely randomized design with three replications, each replication consistedd of three pots and each pot contained a plant. The factors of this experiment were Mycorrhizal fungi inoculation (with and without inoculation) during the transplanting process to the culture medium near the roots, and putrescine at four concentrations of 0 (control), 1, 2, and 4 mM, were applied two weeks after transplantation, every 15 day-interval for three months. In order to investigate the effects of putrescine and mycorrhizal fungi on some morphological and physiological characteristics of plants, two weeks after the end of treatments, leaf sampling was performed to measure physiological characteristics. Effects of putrescine and mycorrhizal fungi were assayed in some morphological characteristics including leaf number, leaf length and leaf area, fresh and dry weight of leaves and some physiological parameters including chlorophyll index, chlorophyll content (a, b and total) and soluble sugar as well as vase life and petal’s anthocyanin during postharvest time. The SAS software version 9.1 was used to analyze the variance and compare the mean of the studied traits. Comparison of means was performed using the Tukey’s range test method at a probability level of 1 and 5%. Excel (2016) software was also used to draw the graph. Results and Discussion: According to the comparison of means, putrescine, along with mycorrhizal fungi, increased the number of leaves, leaf area, and the fresh and dry weight of the leaves as well as chlorophyll index, chlorophyll a, b and total and carotenoid content of leaves. In this study, inoculation with mycorrhiza reduced leaf length but increased leaf area resulted in that mycorrhiza could increase leaf blade because of increasing cytokinin in plant. Putrescine with mycorrhizal fungi, increased leaf growth, photosynthesis of plant and carbohydrates production. In the literatures, it is reported that, the vase life of cut flowers is a very important point in choosing them as great cut flowers. The results showed, putrescine and mycorrhiza had increased the vase life of gerbera flowers, therefore increased the quality of this plant. Putrescine and mycorrhiza also increased the amounts of anthocyanins in the petals, and by the sixth day, the highest levels of anthocyanins were observed in the petals. Probably, the reason for increasing the anthocyanins on the sixth day is the presence of carbohydrates stored in the flower, which due to the reduced respiration and carbohydrate consumption in this process. Conclusion: Based on the results of the present study, it can be concluded that putrescine, with mycorrhizae, improved growth characteristics as well as increasing the postharvest life and the quality of cut flowers of gerbera. It is also observed that among the different concentrations of putrescine, the concentration of 2 mM had the greatest effect on the growth and physiological parameters as well as vase life of gerbera.
Mehdi Mahmoudzadeh; MirHassan Rasouli-Sadaghiani; Abbas Hassani; Mohsen Barin
Abstract
Introduction: Arbuscular mycorrhizal symbiosis is formed by approximately 80% of the vascular plant species in all terrestrial biomes. Using soil microbial potential including arbuscular mycorrhizal fungi (AMF) has been widely considered for improving plant growth, yield and nutrition. Medicinal herbs ...
Read More
Introduction: Arbuscular mycorrhizal symbiosis is formed by approximately 80% of the vascular plant species in all terrestrial biomes. Using soil microbial potential including arbuscular mycorrhizal fungi (AMF) has been widely considered for improving plant growth, yield and nutrition. Medicinal herbs are known as sources of phyto chemicals or active compounds that are widely sought worldwide for their natural properties. Members of the Lamiaceae family have been used since ancient times as sources of spices and flavorings and for their pharmaceutical properties. Peppermint (Mentha piperita) has a long tradition of medicinal use, with archaeological evidence placing its use at least as far back as ten thousand years ago. Essential oils - are volatile, lipophilic mixtures of secondary plant compounds, mostly consisting of monoterpenes, sesquiterpenes and phenylproponoids.Arbuscularmycorrhizal fungi with colonizing plant roots improve nutrient uptake as well as improving essential oil yield of medicinal plants by increasing plant biomass. The aim of the present study was to evaluate the effect of AMF inoculation on essential oil content and some growth parameters of peppermint (Mentha piperita) plant under glasshouse condition.
Materials and Methods: This study was performed on a loamy sand soil. The samples were air-dried, sieved (