Ornamental plants
Ali Sahari Moghaddam; Behzad Kaviani; Ali Mohammadi Torkashvand; Vahid Abdossi; Ali Reza Eslami
Abstract
IntroductionYew or English yew (Taxus baccata L.) from the family of Taxaceae is an ornamental shrub that is used in various industries. Root induction and formation process at the base of stem cuttings of yew is slow. This species is in danger of extinction. Stimulation of rooting in cuttings causes ...
Read More
IntroductionYew or English yew (Taxus baccata L.) from the family of Taxaceae is an ornamental shrub that is used in various industries. Root induction and formation process at the base of stem cuttings of yew is slow. This species is in danger of extinction. Stimulation of rooting in cuttings causes the plant to grow faster. Polyamines are a group of plant growth regulators that play a variety of roles, including cellular differentiation and development and stimulation of adventitious root production. Some yew habitats have been destroyed because of neglect, destruction, livestock and ineffective exploitation. The yew is propagated by seeds or through cutting and grafting. Propagation of yew through seed is difficult and obtained plants show non-uniformity. Therefore, vegetative propagation is used to produce plants similar to the mother plant. The proliferation of the plant through leafy stem cutting is one of the most famous and the best propagation methods due to the preservation of the genetic structure and uniformity. Increasing the rooting capacity of trees and shrub cuttings is being carried out with a variety of plant growth regulators around the world. Putrescine has shown a better response in compare with other polyamines. The stimulation effect of exogenous application of polyamines, especially putrescine, was shown on the rooting of several plants’ cutting. Literature evaluation showed that there is not any study on the effect of polyamines on the rooting of the yew stem cuttings. Therefore, the aim of this research was to improve the rooting conditions of difficult-to-root cuttings with different concentrations of putrescine (a type of polyamine). Materials and MethodsIn order to investigate the effect of different concentrations of putrescine, an experiment was performed based on a completely randomized block design with 4 replications. Treatments included 0 (as a control), 500, 1000, 2000, 3000, 4000 and 5000 mg.l–1 of putrescine concentrations. In October, 25 cm of the end of the shoot of 5-years-old mother plants were cut and used as hardwood cuttings. The cuttings diameter was 2.5-3 mm. The lower ends of the shoot cuttings were kept at different concentrations of putrescine for 10 seconds and then placed in the cultivation bed. In this study, root percentage, number of roots, root length, stem length, shoot number, leaf number and survival percentage of cuttings were measured. Cuttings cultivation bed was perlite, cocopeat and peat moss. To prevent possible contamination, the bottom of the cuttings were immersed in a 2/1000 fungicide solution of Berdofix a week befor cutting preparation. Results and DiscussionThe results of analysis of variance showed that different concentrations of putrescine on all traits were significant at 1% probability levels. The results of mean comparison showed that the largest number of roots (6.50 per plantlet) and the highest root length (7.70 cm per plantlet) were observed in cuttings treated with 500 mg.l–1 putrescine. The highest number of shoots (5.50 per plantlet) and the highest rooting percentage (97.50) were obtained in cuttings treated with 2000 mg.l–1 of putrecine. The maximum number of leaves (41.25 per plantlet) was counted in cuttings treated with 3000 mg.l–1 of putrescine. Yew can be propagated successfully by stem cuttings. Natural conditions propagation and in vitro propagation beside cryopreservation are effective approaches to conserve plants particularly those putted in the red list. Plant growth regulators have an effective role in increasing the rooting of difficult-to-root cuttings of trees and shrubs. The exogenous use of polyamines as a new group of hormones stimulated root production in some cuttings. Peach × almond hybrid cuttings treated with 2 mM putrescine for 5 min showed the highest rooting percentage, root number and root length with the best quality. Putrescine is capable to influences on other plant growth regulators and has less toxicity than most of them. Polyamines stimulate cellular division in dissection place cells of cuttings such as cambium and phloem. The exogenous application of these compounds, especially putrescine during the root formation phase resulted in an increase in endogenous putrescine, endogenous auxin and peroxidase enzyme activity. In the cutting of the leafy stem of Corylus avellana L., the use of putrescine stimulated rooting. The study, like the present study, confirmed that putrescine can be useful for increasing rooting percentage and root quality. Putrescine had an effective role in the rooting of the stem cuttings. The present study revealed that the lowest root number was counted in cuttings that were not treated by putrescine (control). Polyamines (spermine, spermidine and putrescine) increased rooting percentage and root growth by stimulating root cell division (increased mitotic index of tip root cells) in regenerated pine (Pinus virginiana Mill.) seedlings. Polyamine biosynthesis and antioxidant enzymes activity were increased during root induction and formation. The exogenous application of spermidine in the apple (Malus prunifolia) stem cutting stimulated rooting by changing the concentration of some hormones. Spermidine regulated the expression of genes involved in the production of auxins. The study aimed to investigate the cellular-molecular effect of polyamines on the structure and development of roots in Arabidopsis showed that these organic compounds adjusted the size of the root meristematic zone during the effect on both symptomatic accumulations of hormones and reactive oxygen species (ROS). The same and different results are presented with the present findings by some other researchers. The main cause of these different results is the difference in the amount and balance of endogenous hormones, including polyamines in different species. Plant genotype, type of cuttings, cutting age, environmental factors, nutritional status especially type and amount of carbohydrates in the plant, the transfer rate of these carbohydrates from leaves to roots, the presence and the amount of phenolic compounds, nitrogen compounds, phonological stages and cutting season also play an effective role in these differences.
Pomology
Sadegh Azizifar; Vahid Abdossi; Rahmatollah Gholami; Mehrdad Ghavami; Ali Mohammadi Torkashvand
Abstract
Introduction: The availability of water for irrigating crops is one of the serious challenges at present and the future of the world. Drought stress has harmful effects on plant growth and productivity, though bringing some serious changes in plant physiology and biochemistry. Drought reduces plant growth ...
Read More
Introduction: The availability of water for irrigating crops is one of the serious challenges at present and the future of the world. Drought stress has harmful effects on plant growth and productivity, though bringing some serious changes in plant physiology and biochemistry. Drought reduces plant growth and yield by having negative effects on plants water potential, cell division, photosynthesis activity, chlorophyll content, and protein synthesis. Although olive naturally tolerates drought, studies had shown that drought undermines its growth, yield and photosynthesis. Employing some appropriate transpiration-reducing approaches could induce olive tolerance towards water deficiency. In this regard, kaolin, through raising light reflection and diminishing the rate of transpiration, is able to lessen leaf temperature in the stressed plants. Salicylic acid (SA), as a strong signaling molecule in plants, regulates physiological and biochemical functions effective in defense mechanisms and also boosts biological and non-biological factors involved in augmenting plants.. The major roles of SA in drought- stressed plants are as follows: activation of antioxidant defense system, production of secondary metabolites, synthesis of osmolytes, optimization of mineral status and maintenance of proper balance between plant photosynthesis and growth. Although some information over effects of SA and kaolin individually on stressed plants is available, to the best of our knowledge, their simultaneous effects on plants under stressful conditions has not been investigated yet. Therefore, the present study was aimed to investigate different applications of SA and kaolin (i.e. individually and simultaneously) on field-grown olives under drought condition.Materials and Methods: This research was conducted in Dalahu Olive Research Station located in Kermanshah province. This experiment was designed as a factorial experiment in the form of a randomized complete block design with 3 replications. Factors included different foliar spraying (i.e. control, 1 mM SA, 2.5% kaolin, and a combination of them in the mentioned concentrations) and irrigation at three levels (i.e. 100, 75, and 50% of water requirement). Irrigation was performed based on three-day interval schedule according to the above method by measuring daily evapotranspiration and required volume of water by considering the plant coefficients of olives and by drip irrigation.Results and Discussion: Although olive tree is a drought-tolerant plant, drought diminished its yield. The results of this study demonstrated a decrease in total yield of olive trees due to water deficit in different years. In this regard, water deficit under high temperature and low atmospheric humidity are believed to bring about a reduction in yield of drought-stressed olive. The results of this research showed that the foliar application of SA and kaolin on olive trees led to a reduction in ionic leakage and malondialdehyde (MDA) and an increase in RWC, chlorophyll content, phenol and total yield, as compared to the control. Foliar application of SA caused a significant increase in proline content and total carbohydrates, while kaolin had no significant effect on aforementioned traits. It seems that a reduction in oxidative damage and an increase in yield of olive cultivars under different irrigations manifested several defense mechanisms induced by exogenous application of SA and kaolin. In this context, kaolin was found to protect leaves and fruits from harmful ultraviolet rays and this remarkably improves the performance of drought-stressed plants by a decrease in the ambient temperature of plants in order to mitigate deleterious effects of drought such as oxidative damage, chlorophyll degradation, and lowering RWC. These results have been substantiated for different olive cultivars at different parts of the world under this condition.In the present study, SA increased chlorophyll content, RWC, proline content, carbohydrate and total phenol; as a result, the yield of SA- treated plants was higher than that in control plants. Similarly, Brito et al (5) reported that applying SA on drought-stressed olive improved osmolate accumulation, photosynthesis activities, RWC and chlorophyll content. The accumulation of phenolic compounds in SA-treated plants is believed to protect plants against stressful conditions. Therefore, the role of SA and kaolin in alleviating drought in favor of enhancing plants yield represents their efficiency under such condition. In the present study, we also employed a combination of SA and kaolin and the results showed no synergistic function between them on most traits. Therefore, to reduce the effects of drought on olive tree, it is recommended to utilize SA or kaolin separately.
Farideh Sheikhmoradi; Isa Arji; Akbar Emaeili; Vahid Abdossi
Abstract
Abstract
Water deficit and consecutive droughts have lead to drought stress in most parts of the world recently. We need prepare a good program to use better available water. Different material can be used to increase water use efficiency. Super absorbent is one of the materials used around the world. ...
Read More
Abstract
Water deficit and consecutive droughts have lead to drought stress in most parts of the world recently. We need prepare a good program to use better available water. Different material can be used to increase water use efficiency. Super absorbent is one of the materials used around the world. These materials absorb water in the soil so that reserved water is usable by plant in the time of drought stress and they can reduce stress and lead to prevent yield loss. So that an experiment was conducted to evaluate effects of different super absorbent and irrigation cycles on lawn. A split plot experiment based on randomized block design with three replication was used so that irrigation cycles and super absorbent amounts used as main plots and subplots respectively. 4 irrigation periods (1, 2, 4 and 6 days) and 4 super absorbent amounts (0, 20, 25 and 30 g/m2) were used as experimental treatments. One day irrigation interval and zero super absorbent amounts were used as control. Lawn water requirement calculate by evaporation from a pan class A. Results shown that super absorbent amount had significant effect at 1% and 5% level on shoot height, total chlorophyll and plant density but had significant effect on root fresh and dry weight, shoot fresh and dry weight, root developing. Rigidity, Elasticity and performance quality was higher for 30 g/m2 of super absorbent amount at one and two day's irrigation cycle interval in compare to other treatments. Experiment results showed that lawn performance was higher in 30 g/m2 of super absorbent amount at two days irrigation cycle than the others and had 50% water saving in compare to one day irrigation interval.
Keywords: Irrigation cycle, Lawn, Qualitative characteristics, Super absorbents