Postharvest physiology
Behzad Kaviani; Mohammad Reza Safarimotlagh; Sara Hataminejad
Abstract
Introduction Chrysanthemum (Chrysanthemum morifolum L.) is one of the most important cut flowers in the world, which currently ranks second in the world after rose in terms of economy and cultivation. Stem end blockage and water stress are two problems in decreasing the vase life of chrysanthemum ...
Read More
Introduction Chrysanthemum (Chrysanthemum morifolum L.) is one of the most important cut flowers in the world, which currently ranks second in the world after rose in terms of economy and cultivation. Stem end blockage and water stress are two problems in decreasing the vase life of chrysanthemum cut flowers. Cut flowers undergo physiological and biochemical alterations which often lead to an early senescence. Steps to delay the senescence process rely on consideration of many aspects of handling process particularly the preservative solution that will influence the quality and longevity of the flowers. Many flowers are harvested before they are fully developed, to ensure a long postharvest life and to minimize mechanical damages which may occur during handling. Many researches have been performed to prolong the vase life of chrysanthemum cut flowers with different treatments like essential oils, organic acids and nanoparticles. Essential oils are aromatic oily liquids obtained from some aromatic plant materials. In vase solution, microorganisms cause stem obstruction and accelerate the aging of petals. Microorganisms and their toxic products restrict water uptake by blocking the end of the stem. Water balance, which is an important factor in maintaining the quality and longevity of cut flowers and the inability to uptake water are the main causes of senescence. The presence of disinfectants in the vase solution prevents the growth of microorganisms, protects the vessels against disintegration, and ultimately increases the vase life. Most of nanoparticles have antibacterial effects and their application in vase solution hinders microorganism growth and vascular blockage. Nanoparticles have high area-to-volume ratio, high efficiency, and low toxicity. Some nanoparticles penetrate into the cells of bacteria, disrupt their respiration chain, and cause disorder in their cell division, thereby killing them. They also inhibit the accumulation of bacteria in vase solution and stem end of cut flowers. Various studies have reported the positive impact of nanoparticles on decreasing microbial load, reducing transpiration from leaf surface, and preserving water uptake. Studies on postharvest longevity of chrysanthemum cut flowers using these compounds is low. Therefore, the aim of the present study was to evaluate the effect of orange spring essential oil, fulvic acid and cupper nanoparticles on vase life and some physiological parameters of chrysanthemum cut flowers. Materials and MethodsThe experiment was performed based on randomized completely design with three replicates in order to investigate the effect of different levels of fulvic acid (50, 100 and 150 mg l–1), orange spring essential oil (10, 30 and 50%) and copper nanoparticles (5, 10 and 20 mg l–1) in comparison to control (distilled water + 3% sucrose + 30 mg l–1 8-hydroxyquinoline sulphate) on postharvest parameters of chrysanthemum cut flowers. Measured parameters included vase life, solution uptake, vase solution bacterial population, stem end bacterial population, decreasing the brix degree, decreasing fresh weight, dry matter, total chlorophyll content, carotenoid content, protein content, and peroxidase and superoxide dismutase activity. Data were analyzed by SPSS statistical software package and means were compared with the LSD test at the probably level of 95%. Results and DiscussionAccording to the obtained results, the effect of treatments on improving the quality characteristics of chrysanthemum cut flowers after harvest was significant. Results showed that the high vase life (16.33-17.00 days) was obtained with all three copper nanoparticles concentrations. The vase life of chrysanthemum cut flowers was extended to 17 days by the addition of 20 mg l–1 copper nanoparticles in preservative solution in compared to control with 14 days’ vase life. Least solution bacteria colonies was obtained through the use of 5 mg l–1 copper nanoparticle. On the other hand, least stem end bacteria colonies was obtained using 10 and 30% orange spring essential oil. Solution uptake in these treatments was high, too. The effects of different treatments on some other physiological traits and antioxidant enzymes activity were measured. Many studies have been carried out on the effect of essences (herbal extracts) as antimicrobial agents on prolonging the vase life of cut flowers. In most of these studies, these essences could prolong postharvest life. Essences have been studied with the intension of incorporating them into integrated pest management to avoid or reduce the use of synthetic bactericides and fungicides. They also have antioxidant properties. Application of herbal extracts improved water absorption in rose cut flowers by preventing the vessel obstruction. The above results are similar to the results of this study. In most cases, when the cut flowers were treated with nanoparticles, they exhibited longer vase life, higher water uptake, and lower stem-end bacteria than the control flowers.