Mohammad Reza Naroui Rad; Behnam Bakhshi; Jahangir Kohpalekani Abbasi; Ahmad Ghasemi; Mansour Fazeli Rostampour
Abstract
Introduction: In Iran, there are various melon populations due to properties of cross pollination, which are mostly cultivated in the desert, so it is important to identify populations and study their response to low irrigation conditions and their selection. Sistan is one of the most important melon ...
Read More
Introduction: In Iran, there are various melon populations due to properties of cross pollination, which are mostly cultivated in the desert, so it is important to identify populations and study their response to low irrigation conditions and their selection. Sistan is one of the most important melon production areas in the country. Every year, in the optimal water conditions of the region, cultivation area reaches nearly to 6,000 hectares, but the area under cultivation is affected by fluctuations in the Hirmand River. Its famous melons in the region include Sefidak, Firoozi and Helmendi, which are very popular among farmers in terms of taste. The amount of rainfall in this region is very small and the agriculture of the region is affected by the fluctuations of Hirmand River and these fluctuations cause damage to agricultural producers, but recognizing the best and most suitable genotypes can help a lot to melon production. Variation and selection are the important elements of the breeding program and the selection by the breeder requires a good variation in the population. In Iran, the largest producer of melons is province of Khorasan Razavi, with 48.7 percent of the production in country, and province of Sistan and Baluchistan with the 5.62 percent is in the fifth rank. Therefore, in this regard, it is necessary to consider the desirable populations and cultivars in terms of production and yield. The quality of soil and the limitation of water resources, especially in recent decades, have intensified the world's agriculture. In the most parts of Iran, especially in Sistan, due to recent drought, identification of resources and cultivars with the potential of optimal production is important. Therefore, the present study was conducted to evaluate the populations of melons and their response to different irrigation regimes.
Materials and Methods: In this study, the populations of the gene bank (34 population), mostly from the central and eastern regions of the Iran, along with two local sefidak and suski, which were relatively tolerant and sensitive, respectively to drought stress were cultivated in a simple square lattice design with 2 replications for comparison under normal and drought stress conditions. Under water deficit conditions, irrigation was carried out at water depletion of 75% and for normal irrigation with 50% water depletion from the field capacity. Soil moisture monitoring was carried out using a TDR device. Some morphological and physiological traits such as yield, number of fruits per plant, average fruit weight, fruit length and width, plant length, hole diameter, chlorophyll content, canopy temperature, relative water content were measured
Results and Discussion: Based on the results of combined analysis of variance, there was a significant difference between the populations for all traits except for the number of fruits per plant. The effect of the environment was significant only for the traits of soluble solids, single plant yield, canopy temperature and days to maturity also the interaction of the population with the environment was significant only for plant length, canopy temperature and root length, which indicated a different population reaction in relation to these traits under two conditions of normal and moisture stress. The results of the mean comparison of the traits showed that in normal conditions, the highest number of fruits belonged to numbers 1, 2, 6, 7 and 8, which had no significant difference with the check number 36. The results of analysis of factor in moisture stress condition showed that the first four factors justify nearly 70% of the variation among the traits. Therefore, the positive values of the first factor can be effective for selection of genotypes with a high yield and high fruit weight. However, the second factor with negative values of canopy temperature and positive values of leaf relative water content is effective in determining the high tolerance genotypes to moisture stress conditions.
Conclusion: Under normal and stress conditions, population number 23 had acceptable yields. The traits of fruit weight and size, flesh diameter and fruit length and width are among the traits that should be considered by the breeders according to their relationship with the yield. Genotypes with high root length had high tolerance to water deficit condition. In general, under stress conditions, more soluble solids were observed in the populations.
Ahmad Hajiali; Bahman Zahedi; Reza Darvishzadeh; Jahangir Kohpalekani Abbasi
Abstract
Introduction: Watermelon (CitrulluslanatusThunb)belongs to Cucurbita genus and Cucurbitaceaefamily. Some people know Watermelon native to India and othersthought of it as native to African countries. The greatest diversity can be seen in West Africa, China and parts of India. Near East and Mediterranean ...
Read More
Introduction: Watermelon (CitrulluslanatusThunb)belongs to Cucurbita genus and Cucurbitaceaefamily. Some people know Watermelon native to India and othersthought of it as native to African countries. The greatest diversity can be seen in West Africa, China and parts of India. Near East and Mediterranean countries are also good places to find relatives and ancestors of watermelon. Like all Cucurbita genuscrops,, Watermelon has a variety of flowers including base, male and female separately located on one slip. In terms of production atglobal level, China is located in the first place followed by America, Iran and the Republic of Korea, respectively.
Materials and Methods: In order to evaluate genetic diversity among Iranian watermelon landraces by morphological traits, 16 landraces alongwith two commercial watermelon cultivars were planted in completely randomized block design with three replications inAgricultural Research Center of Urmia in 2013.
Morphological markers can be an effective means to determine genetic relationsamong cultivars and among selections used in watermelon breeding programs. 18 traits including cotyledon length, fruit length, fruit weight, fruit mass, fruit skin, rind thickness, flesh thickness, yield, seed length, seed width, weight of 100 seeds, vitamin C, pH, TSS, EC, chlorophyll content and plant length were assessed in the studied genotypes. During the fruit ripening,four fruits were selected randomly from each plot and according to the International Institute germplasms (IBPGR / IBGRI),solidscontent (TSS)was measured by using refractometer, pH by using pH meter, and fruit and seed weight by using digital scale. The amount of vitamin C (milligram per 100 grams) was measured using iodometry.
Results and Discussion: Results of variance analysis showed that there were significant differencesamong watermelon cultivars in terms of cotyledon length, fruit length, fruit weight, flesh weight, yield, seed length, seed width, seed weight, vitamin C, soluble solids and EC at the 1% level, while the level of significance with respect toskin weight, chlorophyll content and photosynthetic rate was5%.The results also showed that there were not significant differences among the cultivars in terms of pH, skin and flesh thickness, and plant length, suggesting that there is no diversity among the masses. Based on the means comparisontable,the highestfruit length (39 cm), fruit weight (8.03 kg), fleshweight(4.3 kg), skin weight (3.36 kg) and performance rate (24926 kg in hectare) were observed in Charleston Gray.Isfahan 808 mass showed the minimum fruit length (23.66 cm);Khorasan 806 mass had the least fruit weight (3.33 kg) andskin weight (1.8 kg); and East Azerbaijan 800 and Hamedan 817masses showed the lowest fruit flesh weight (1.5 kg) and performance (13444 kg per hectare), respectively.The highest positive phenotypic correlation (0.968) was observed between fruit mass and fruit weight,whilethe highest negative correlation (-0.815) existedbetween TSS and seed length. The highest positive (0.987) and negative (-0.990) genetic correlation was foundbetween fruit weight and fruit length, and between flesh thickness and photosynthesis, respectively. The greatestheritability was related to 100-seed weight, whereas minimum heritability was due to ph. The studied accessions were classified into three different groupsby using Cluster analysis based on Ward method. Based on the intervaltable,the highest space rate was observed between groups one and three (8.985).The resultsalso showed that the maximum expected heterosis obtained in crosses between genotypes one and three.
Conclusion: Based on the results of this research, improved varieties (Charleston Gray and Crimson Sweet) had the highest level of performance, TSS, fruit weight and flesh weight compared to the native masses.