Growing vegetables
Saeed Mohammadzade; Morteza Goldani; Fatemeh Yaghobi; Mohammad Bannayan Aval
Abstract
IntroductionIncreasing the tolerance to drought and nitrogen stress in tomato cultivars is essential for the sustainable and environmentally friendly production of this product. Also, knowing the morpho-physiological, biochemical and molecular responses to drought and nitrogen stress is important for ...
Read More
IntroductionIncreasing the tolerance to drought and nitrogen stress in tomato cultivars is essential for the sustainable and environmentally friendly production of this product. Also, knowing the morpho-physiological, biochemical and molecular responses to drought and nitrogen stress is important for a comprehensive understanding of plant water tolerance mechanisms and nitrogen limitation conditions in higher plants. Therefore, the purpose of this study was to investigate the effect of different levels of irrigation and nitrogen fertilizer on the quantitative and qualitative characteristics of tomatoes in different Cluster rows under greenhouse conditions. Materials and MethodsThe experiment was conducted at the research greenhouse of the Faculty of Agriculture, Ferdowsi University of Mashhad, in two years, 2021-02 and 2022-03. The experiment was set up as split-plot layout based on randomized complete block design with three replications. Irrigation levels were considered as the main plot at three levels: 75% (I75), 100% (I100), and 125% (I125) of the crop water requirement. Nitrogen fertilizer was considered as the subplot at four levels: control (no nitrogen), 75 kg ha-1 (7.5 g m-²), 150 kg ha-1 (15 g m-²), and 225 kg ha-1 (22.5 g m-²) from urea as the nitrogen source. Tomato seeds (Newton cultivar) were sown in polyethylene seedling trays with a coco peat and perlite mixture as the substrate. The seedlings were transplanted to the main field at 15 cm height with 3-4 true leaves. In all stages of growth, consistent agricultural practices were applied, including weed control, pest and disease management. Fertilization for tomato plants was based on soil analysis. Initially, after transplanting the seedlings, a complete fertilizer with high phosphorus (NPK 10-52-10) was applied at a ratio of 1.5 kg per thousand plants. In the subsequent stages, complete fertilizers (NPK 20-20-20) and high-potassium fertilizers (NPK 20-20-36) were applied through irrigation. Throughout the plant's growth stages, to prevent potential deficiencies and harm to growth and fruit development, micronutrients were applied as foliar sprays. Results and Discussion The results for all three Clusters showed that although nitrate accumulation was higher in the first year compared to the second year, in both years, nitrate accumulation was higher at I75 and 225 kg ha-1 nitrogen compared to the other treatments. The highest nitrate accumulation in the sixth (6.12 mg.kg-1) and seventh (6.29 mg.kg-1) Clusters was observed in I75 and 225 kg ha-1 nitrogen treatment in the first year. In the eighth Cluster, contrary to the sixth and seventh Clusters, the highest nitrate accumulation was obtained in I100 and 225 kg/ha nitrogen (6.43 mg.kg-1) in the first year. Chlorophyll decreased with stress but increased with nitrogen levels. In all four Clusters, the highest chlorophyll a content was obtained in I100 and 225 kg ha-1 nitrogen, with values of 3.75, 3.70, 3.30, and 3.85 mg g-1 fresh weight, respectively. The highest fruit number per square meter was obtained in I125 and 225 kg ha-1 nitrogen treatment in the second year (260 fruits), although there was no significant difference compared to the first year. Furthermore, this treatment produced 11% more fruits than the highest fruit number at 100% moisture. The highest single fruit weight was obtained in I125 and 225 kg ha-1 nitrogen treatment in the first year of the experiment (254 g), although there was no significant difference compared to the second year. Additionally, this treatment showed no significant difference in fruit weight compared to the 225 kg ha-1 nitrogen and I100 treatment in the first year but was 11% higher in the second year. The highest yield (65.1 kg m-²) was obtained at I125 and 225 kg ha-1 nitrogen. However, in the control treatment without fertilizer, there was no significant difference in yield at I100 and I125. Furthermore, the highest water use efficiency was observed at I100, followed by I75. In all fertilizer treatments, I125 treatment had the lowest water use efficiency. The highest water use efficiency (285 kg m-³) was obtained at I100 and 225 kg ha-1 nitrogen. Conclusion In general, the results demonstrated that while excessive nitrogen fertilizer increased nitrate accumulation at different irrigation levels, the increased use of irrigation water reduced nitrate accumulation in tomato fruits while improved yield. Moreover, no significant difference in fruit yield was observed between I125 and I100, but optimum yield and favorable water use efficiency were obtained with less water consumption. Based on the results of this experiment, the recommended treatment under greenhouse conditions is irrigation at 100% of the FC and the use of 250 kg ha-1 nitrogen.
Zahra Karimian; Ali Tehranifar; Mohammad Bannayan Aval; Majid Azizi; Fatemeh Kazemi
Abstract
Introduction: Considering population growth and urbanization development, one of the main requirements of the urban society is to create appropriate life condition for dwellers. The microclimate is considered as one of the factors that affect the activity of people in the environment and in terms of ...
Read More
Introduction: Considering population growth and urbanization development, one of the main requirements of the urban society is to create appropriate life condition for dwellers. The microclimate is considered as one of the factors that affect the activity of people in the environment and in terms of tourist and recreational industry, it is considered as an important source of economic. Many climatic parameters such as temperature, relative humidity, radiation and wind speed can affect the quality of people's recreational activities. So far, many studies have been conducted in the world about the positive effects of vegetation specially trees in the urban landscape on the optimizing of microclimate and human thermal comfort. The cooling mechanism of trees and clouds in an area mainly by directly shading the ground surface and indirectly by supplying humidity are similar. Thus, perhaps it be possible to calculate the changes in temperature and relative humidity based on cloud categories and impute it to tree canopy and vegetation size. The purpose of the present study was to answer followed questions, 1) does the use of single tree produce a sensible difference in temperature and humidity relative to open space? 2) Does the acacia tree as an indicator for a broad-leaved species compare to the pine tree as an indicator for the needle species in terms of the microclimatic variation of around themselves act differently? 3) Do the microclimatic elements (Temperature and relative humidity) under the canopies are comparable to various cloudiness conditions?
Materials and Methods: The experiments were conducted at Ferdowsi University of Mashhad. The climate data under two species of false acacia (Robinia pseudoacacia) and pine trees (Pinus eldarica) and open space were received from Mashhad weather station over a period of 19 years, recorded and analyzed. In the comparison of the effects of vegetation and cloudy conditions on the temperature and relative humidity an assumption was proposed that has been mentioned in the following. The differences between the means of temperature and relative humidity obtained under SKC (Sky Clear) cloudiness conditions and in open space; under SCT (Scattered Sky) conditions and pine trees; and under BKN (Broken Sky) conditions and false acacia tree must be equal or these differences must be statistically not significant. In addition to the effect of tree canopy, the effects of days and hours on the temperature and humidity were investigated. To analysis and also mean comparison, SPSS 16 software was used.
Results and Discussion: The results showed that the temperature (decreasing) and relative humidity (increasing) were significantly different among various cloudiness conditions during 19 years. The results also indicated that between the temperatures recorded under the canopy of pine and false acacia trees, and also among of recorded relative humidity in two trees specious with corresponding outdoor spaces there were significant differences. Also, there were no significant differences among the temperature of the clear sky and the partly cloudy with that of the mostly cloudy sky. Further, clear sky and mostly cloudy sky showed significant differences in terms of relative humidity. Mostly cloudy sky and the partly cloudy sky compared with pine and false acacia trees were about 4.6 and 4.5oC cooler, respectively. The cloud covers, also could enhance the more level of relative humidity in the environment in comparison with single tree canopy, so that were caused a wetter environment equal to16.6 and 8.4 percent, respectively. The results also showed that temperature and relative humidity created by the shade from false acacia and pine trees are not comparable with the same climatic factors created by partly cloudy and mostly cloudy skies. In the present study, false acacia as a broad-leaved tree compared with pine tree and also open space could cool the environment about 0.65 degree C more that is in line with previous studies that showed the microclimatic impact of vegetation depend on crown and leaf size. Temperature and relative humidity in vegetation (trees) and cloudy condition are not comparable with microclimate and their impact on the environment is not the same. The cloud covers, also could enhance the more level of relative humidity in the environment in comparison with single tree canopy, so that were caused a wetter environment equal to16.6 and 8.4 percent, respectively.
Conclusion: This finding showed that climatic effects of cloud covers had no similarity compared with two studied trees species. It may also indicate that green space and greenery should not also be ignored in areas where cloudy skies are mostly present throughout the year.
Zahra Karimian; Ali Tehranifar; Mohammad Bannayan Aval; Majid Azizi; Fatemeh Kazemi
Abstract
Introduction: With regard to two adverse climatic phenomena of urban heat islands and global warming that has been leading to increase temperature in many cities in the world, providing human thermal comfort especially in large cities with hot and dry climates, during the hottest periods of the year ...
Read More
Introduction: With regard to two adverse climatic phenomena of urban heat islands and global warming that has been leading to increase temperature in many cities in the world, providing human thermal comfort especially in large cities with hot and dry climates, during the hottest periods of the year is crucial. Mainly vegetation with three methods: shading, evapotranspiration and wind breaking can affect micro-climate. The aim of this study was to asses and simulate the impact of existing and proposed vegetation on the human thermal comfort and micro climate changes in some residential areas of Mashhad during the hottest periods of the year by using a modeling and computer simulation approach.
Materials and Methods: This research was performed in the Ghasemabad residential area, Andisheh and Hesabi blocks, and in the hottest period of the year 2012 in Mashhad. Recorded data in the residential sites along with observed data from Mashhad weather station that included temperature, relative humidity, wind speed and direction. Soil data (soil temperature and humidity, soil\ type), plant data (plant type, plant height, leaf area index) and building data (inner temperature in the building, height and area buildings) as input data were used in the ENVI-met model. Both two sites, Andishe and Hesabi residential blocks, with vegetation (different trees and bushes plants, for example Acacia, ash, sycamore, mulberry, chinaberry, barberry, boxwood and Cotoneaster that all of them are tolerant and semi-tolerant to drought) about 20% were simulated. Regarding the area of simulating, 3 receptors were considered in per sites. Simulation was commenced from 6 AM and continued until 18 pm, but just data of 11-15 hours were analysed (the hours of peak traffic).
Results and Discussion: Analysis of outputs data revealed that the temperature of two residential sites in all three receptors during the study were almost the same. In general, the maximum temperature difference between receptors was obtained at 13 hour. The trend of relative humidity changes was very similar in both residential sites. In these two sites the most differences in the relative humidity was obtained at 12 oclock.. In addition, the trend of Predicted Mean Vote (PMV) in Andisheh residential block showed that these changes in central and south-west part of the site were similar. The simulation with vegetation in the sites, also, showed that the trend of temperature and relative humidity changes were similar. The trends of temperature changes in residential site, Hesabi, in the defined receptors were very similar. So that temperature increased from 12 oclock to 15. While the trend of relative humidity changes was quite the reverse. This study results showed that the difference in temperature, relative humidity and PMV between measured and simulated data were minimal in both residential sites. Moreover, the data comparison of PMV indicated that in both residential sites, despite of simulation with vegetation, the human thermal comfort did not improve, so that these sites were in the range of extreme heat stress. There are several reasons to justify this issue, such as the percentage and the type of vegetation, factors related to the topography and geography of area, building distribution and density, type and color of the building materials and surfaces, etc. However, in this part of the study, other factors were constant, except vegetation. It seems that with increase of percentage and the ratio of vegetation, changes in temperature, relative humidity and other micro-climate factors, are created, but sometimes for the reasons stated, the temperature during the hottest period of the year is too high so that increase in vegetation will have little impact on outdoor thermal comfort. It might be the simulated area on these sites as well as the type and the ratio of the selected species to reduce the temperature and increase the relative humidity have been not adequately represent all conditions which be able to improve thermal comfort.
Conclusions: In this study eventually we can conclude that in the simulated sites with about 20 percent vegetation cover,, despite the slight decrease and increase in temperature and relative humidity, respectively compared with the real sites, the thermal comfort range was similar. It is advisable in the future studies to simulate the green area in shape of the vertical and horizontal, changes in species composition in green area like trees, shrubs, and cover plants and also the test of different combinations of type and percentage of vegetation.