Growing vegetables
Keyvan Poorhossein; Bahram Abedy; Mahmood Shoor
Abstract
Introduction Urban agriculture is one of the basic characteristics of urban schematization, which helps to increase the quality of urban life via reducing the climate pollution, preserving and increasing biodiversity, as well as re-utilizing urban waste. Therefore, in recent years, urban agriculture ...
Read More
Introduction Urban agriculture is one of the basic characteristics of urban schematization, which helps to increase the quality of urban life via reducing the climate pollution, preserving and increasing biodiversity, as well as re-utilizing urban waste. Therefore, in recent years, urban agriculture has gained significant importance due to its economic, social and cultural benefits. However, studies have indicated that urban soils can contain high concentrations of certain infrequent elements such as lead and cadmium. These heavy metals can be distinguished from other pollutants because they cannot be bio-degraded; but they accumulate in living organisms and subsequently cause diseases and various disorders even in relatively lower concentrations. Plants, like other organisms, have defense mechanisms that are activated in stressful conditions. Thus, under stress, enzymatic antioxidant systems and non-enzymatic metabolites enhance, due to the production of reactive oxygen species. Peppermint plant (Mentha piperita L) has an essential oil with medicinal properties. High levels of heavy metals cause chlorosis and necrosis, increase the accumulation of reactive oxygen species (ROS) and oxidative stress in mint plants. The present study was conducted on a regional scale in order to investigate heavy metal pollution and determine their impacts on some physiological and biochemical traits as well as the concentration of Cd and Pb in peppermint plants grown in urban green spaces.Material and methodsThis study was conducted to assess the amount of heavy metal absorption and its effect on some biochemical properties of peppermint plant (Mentha piperita L.), in Mashhad city in 2021.The experiment was carried out as a factorial in the form of randomized complete block design in three replications. The first factor (location) were Faz4 Park (with high degree of contamination) and Nasim Park (with low degree of contamination). The second factor was the times of harvest (June15, July15 and August 15). At the time of every harvest fully developed leaves were collected to evaluate physiological and biochemical traits.Results and discussionThe results of analysis of variance indicated that the effect of location was significant on all traits except for the yield of essential oil. Also, the effect of harvest time was significant on all traits except for peroxidase activity and the yield of essential oil. However, the interaction of location and harvest was significant only on phenol, flavonoid, proline, cadmium and lead concentration. The results indicated that the ascorbate peroxidase, catalase and peroxidase activities were higher in Faz 4 Park. Moreover, the highest activities of ascorbate peroxidase, catalase and peroxidase were recorded in Faz 4 + first harvest. Heavy metals cause the production of reactive free radicals and also increase the activity of antioxidant enzymes. However, the chlorophyll a, b, carotenoid and total chlorophyll contents were higher in Nasim. Thus, the highest contents of Chla, Chlb, Chltotal and carotenoid were observed in Nasim + first harvest. The higher amount of chlorophyll and carotenoids in the first harvest is due to the optimal growth conditions such as day length and sunlight and ambient temperature. In addition total phenol, flavonoid, proline, Cd and Pb elements indicated a reducing trend in Faz 4 compared to Nasim Park in different harvest times, but the amount of these traits were higher in the first harvest than in the subsequent harvests. Increased amount of total phenol in the first harvest can be related to the high air temperature at the first harvest which caused stressful conditions in this stage. Proline production also improves under heavy metal stress in order to protect the plant against toxicity. Nevertheless, the percentage of essential oil showed an increasing trend via enhancing the absorption of Pb and Cd in Faz 4 compared to Nasim Park. The higher percentage of essential oil in Faz 4 can be due to the lower growth of leaves due to the presence of more heavy elements in this area. In general, despite the fact that only the concentration of Pb was higher than the world standard level in both parks, the contamination with Cd and Pb (especially Pb) was more in Faz 4 than in Nasim Park, which was a factor in diminishing the growth traits of peppermint plants. In a case of harvest times, the first harvest recorded better growth characteristics and higher absorption of heavy metals due to the higher strength of the plant, while in the third harvest, due to spending more energy for regrowth, it had lower growth characteristics and weaker absorption of Pb and Cd metals. It was cadmium.
Pomology
Saeid Fatahi Siahkamary; Vali Rabiei; Mahmood Shoor; silvana nicola
Abstract
The Lycium genus of the Solanaceae family has excellent nutritional and medicinal value. Two species of Lycium barbarum L. and Lycium chinense Mill. It is often called wolfberry or goji berry. The use of amino acids for horticultural crops is common worldwide, and many chemicals used as biostimulants ...
Read More
The Lycium genus of the Solanaceae family has excellent nutritional and medicinal value. Two species of Lycium barbarum L. and Lycium chinense Mill. It is often called wolfberry or goji berry. The use of amino acids for horticultural crops is common worldwide, and many chemicals used as biostimulants are mixtures of amino acids. The effect of amino acids on plants seems to depend on the type of amino acid supplied and the type of plant. Selenium (Se) is an important component of selenoproteins and seleno-amino acids. Therefore, it has played many roles in the growth and function of living cells and important biological functions in animals and humans. Also Se is very similar in properties to sulfur and can act as S in biochemical systems. Biological fertilizers are fertile materials that contain one or more beneficial soil organisms within a suitable carrier. Overall, these fertilizers contain different types of microorganisms that can convert nutrients from unavailable form to available form through a biological process. The application of supernitroxin fertilizer by stimulating the synthesis of plant hormones increased the growth indicators of sesame varieties.This experiment was conducted in the Research farm University of Mashhad, during 2021 and 2022 years. In early May, goji berry seedlings were planted in the field to check the effect of the L-phenylalanine (Phe), sodium selenate (Se), and Nitroxine were applied before harvesting and foliar spraying on the Goji berry plant during the growth stages. To conduct experiment, two-year-old seedlings of Goji berry cultivar GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province, and after the seedlings were transferred to ground and established, initial foliar spraying was done. In order to evaluate the effect of L-phenylalanine, selenium, and nitroxine treatments, experiment were conducted as a randomized complete block design in 5 replications which factors include the amino acid L-phenylalanine (Phe: 0.5, 1, and 1.5 mM), sodium selenate (Se: 0.25, 0.5, and 1 mg.L-1) and nitroxin biological fertilizer (170, 330, and 500 μl/L) at three levels and distilled water was applied as a control. One pot was considered for each repetition and a total of 10 pots were considered along with the control. Plants were sprayed every 15 days after establishment. After the three stages of foliar spraying, the content of phenol and flavonoid content and antioxidant activity, PAL and anthocyanin were measured.The results showed that the treatments used in this experiment had a significant effect on the physiological and chemical characteristics of the goji berry plant. The results showed that the highest amount of titratable acidity (0.896%) was obtained in samples treated with nitroxine at a concentration of 333 microliters. The highest amount (18.56 mg/g) of this index was obtained in fruits treated with phenylalanine at a concentration of 1.5 mM. The highest amount of this index was obtained in the fruits treated with phenylalanine at a concentration of 1 mM, which was 61.98% higher than the amount of flavonoid recorded in goji berries under control conditions. Also, the results showed that despite the decrease in the activity of PAL enzyme during the increase of selenium concentration, the activity of this enzyme was 13.66% higher than the activity of PAL enzyme under the condition of using selenium at a concentration of 1 mg/liter. The increase in the functioning of the antioxidant system is determined by the total antioxidant, which is controlled by the content of low-molecular components and the activity of antioxidant enzymes. Compounds such as ascorbic acid, glutathione, tocopherol, carotenoids, anthocyanins, endogenous metal chelators, TPC, TFC and alkaloids are low molecular weight antioxidants. Also nitroxin, supernitroplus, phosphate and mycorrhizal fertilizers. Nitroxin binds N in the atmosphere and balances the absorption of nutrient element in the plant. Nitroxin is responsible for the secretion of amino acids, antibiotics, hydrogen cyanide and siderophores, which promote the growth and development of plant roots and shoots, protect the roots from pathogens, thereby increasing yield. A sufficient supply of phenylalanine through the use of exogenous Phe or endogenous Phe provided by the shikimic acid pathway may be required to stimulate the activity of the phenylpropanoid pathway, as shown by the high PAL activity responsible for the accumulation of phenols, flavocyanins and anthocyanins. This leads to the need for ROS accumulation. Anthocyanins are groups of flavonoids found in vacuoles epidermal and mesophyll cells of plants. Anthocyanins can protect chlorophyll from light oxidation and, compared to other components, is a better indicator of plant oxidative stress caused by external factors that accumulate in plantsThe present study was conducted with the aim of studying the effect of L-phenylalanine, selenium and nitroxin biofertilizer on improving the vegetative growth, yield and secondary metabolites of gojiberry during two crop years. To conduct the experiment, two-year-old seedlings of Goji berry variety GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province. The results showed that the use of L-phenylalanine amino acid, selenium and nitroxin biofertilizer had significant effects on the investigated traits during the experiment. So that the use of nitroxin at a concentration of 166 microliters increased the amount of soluble solids and at a concentration of 333 the titratable acidity compared to the control samples. PAL enzyme was obtained in the conditions of using phenylalanine at a concentration of 1.5 mM, which was 52.17% more than the level of PAL enzyme activity recorded in control conditions.
Ornamental plants
Toktam Oraee; Mahmood Shoor; Ali Tehranifar; Seyyed Hossein Nemati; Atiyeh Oraee
Abstract
Introduction Climate change predictions indicate that drought and extreme heatwaves will become more frequent and extreme in many regions. Drought is the main abiotic stress that severely reduces plant yield across the globe. Thus, this may have negative consequences for the agricultural soils, ...
Read More
Introduction Climate change predictions indicate that drought and extreme heatwaves will become more frequent and extreme in many regions. Drought is the main abiotic stress that severely reduces plant yield across the globe. Thus, this may have negative consequences for the agricultural soils, as it limits the availability of water and nutrients to soil microorganisms and plants that develop on these soils. To cope with this situation, the use of organic amendments is the best option. Recent studies have shown that the application of organic fertilizers can affect soil moisture and thus, mitigate the negative effect of climate change on that parameter. Organic amendments increase soil organic matter content thus improving soil physical, chemical, and biological properties, and therefore, can confer drought resistance to soils. The application of organic residues has been presented as a great strategy against soil degradation in semiarid environments. However, the interactions between organic amendments and drought in hollyhock plants are not fully known. Here, we evaluate whether the organic amendment influences the physiological traits of hollyhocks and soil properties under drought conditions. Materials and Methods The experiment was conducted in the research field at Ferdowsi University of Mashhad, Iran. The experiment consisted of three factors (cultivars, organic amendments, and drought) with organic amendments and drought having four and three levels, respectively. Drought treatments were controlled by a TDR at 80, 60, and 40% FC. The three sources of organic amendments were used cow manure, rice hull and wheat straw. Seeds were planted in cocopeat, perlite, and peat mixture trays in the greenhouse with an average temperature of 20 °C and under a photoperiod of 14 hours of light and 10 hours of darkness with a light intensity of 400 μmol-1 m2. In the 5-6 leaf stage, seedlings were transferred in pots (18 cm high and 8 cm in diameter) containing field soil. The plants were transferred to the field with four different substrates (field soil, field soil + manure, field soil + rice hull, and field soil + wheat straw) and were exposed to drought stress for one month during the flowering stage. This analysis examined both the physical and chemical properties of the soil, including changes in the macroelements nitrogen, phosphorus, and potassium. Results and Discussion Soil nitrogen changes were significantly affected by the interactions of ecotype with drought, ecotype with the medium, and drought stress with medium. The highest nitrogen changes were recorded in Mashhad ecotype under 80% FC. Nitrogen content in amended soil had an increasing trend during the experiment, but the amount of nitrogen had a decreasing trend in soil. In all media under stress, the amount of soil phosphorus was increased and the highest amount of phosphorus was observed in soil + manure at all irrigation regimes. The highest amount of potassium in both ecotypes was observed in soil + manure. The amount of potassium in amended soils under stress significantly increased, but in all organic amendments with increasing drought stress from 80 to 40% FC, the potassium content decreased. In both ecotypes, soil salinity was increased in all culture media. Han et al. (2016) stated that the amount of nitrogen, phosphorus, and potassium in the amended soil was higher than the substrates containing chemical fertilizer. The medium EC was alkaline at the end of the experiment and the salinity of the culture medium increased compared to the control. This study revealed a negative correlation between electrolyte leakage and dry weight in hollyhock plants. Furthermore, all measured physiological and growth parameters were significantly affected by the treatments. Notably, the Mashhad ecotype grown in soil supplemented with animal manure at 80% field capacity (FC) exhibited the highest levels of physiological traits (SPAD and relative water content) and growth index (dry weight).The application of manure + soil by providing macro elements reduces the negative effects of drought stress. Conclusion The type of crops grown in arid and semi-arid regions should be reconsidered. Also, some plants with high water requirements should be replaced with plants with low and unexpected water requirements. Because hollyhocks are low-expected plants that grow well in drought areas, so they can be considered as suitable species for cultivation in low-input systems and can tolerate drought situations by 40% FC in amended soil.
Medicinal Plants
Alireza Moshrefi-Araghi; Seyyed Hossein Nemati; Mahmood Shoor; Majid Azizi; Nasrin Moshtaghi
Abstract
Introduction Mentha is one of the most important genera of aromatic plants which belongs to the Lamiaceae family. The genus of Mentha is distributed across Asia, Africa, Australia, Europe, and North America. Mentha longifolia L., also known as wild mint, is a fast-growing aromatic perennial herb. ...
Read More
Introduction Mentha is one of the most important genera of aromatic plants which belongs to the Lamiaceae family. The genus of Mentha is distributed across Asia, Africa, Australia, Europe, and North America. Mentha longifolia L., also known as wild mint, is a fast-growing aromatic perennial herb. It is widely used as herbal medicine and is beneficial for the immune system and fighting with secondary infections. The essential oil of this plant is partly responsible for the decongestant, antispasmodic and antibiotic effects. Currently, much emphasis is being laid on conserving plant germplasm as valuable bio-resources. Selection between and within accessions for a high level of herbage yield and other characters requires an effective tool to be applied by mint breeders. Achieving to cultivars that are more capable of optimum producing is a breeding goal. The objectives of this study were to analyze the diversion of the agronomical traits of Mentha longifolia L. genotypes from different regions of Iran under a similar condition in order to find the superior genotypes and introduce for the domestication of this plant. Material and MethodThis research was performed at the research field of the Ferdowsi University of Mashhad. The field is located at 36˚15' North latitude and 59˚38' East longitude, at an altitude of 985 meters. The information related to temperature and precipitation was obtained from climate station. Soil sampling was done in the depth of 0.3 meter and physical experiments on samples were done before starting the experiment. The field was fertilized by 25 kg/ha animal manure. Seeds of 20 genotypes of M. longifolia L. were prepared from Gene Bank of Research Institute of Forests and Rangelands and a view of the wild mint genotypes distribution was presented on the map. The experiment was performed in a field with 500m2 areas in 2015-2016 growing seasons. The experiment in form of compound analysis arranged in complete randomized design with three replicates of 20 wildmint's genotypes in every replication. In each furrow, fourteen bush was totally studied, in which the distance between the two plants was 20 cm. The plot was considered 1.2 by 3 m and the distance between rows was 0.50 m. The dimension in the plots for every replication area was 3.6 m2 and the distance between blocks were 1.5 and between experimental units were 0.5 meters. Picking up was done after elimination of 0.5 meters from every side of replication. The essential oil was extracted using Clevenger type apparatus and by hydrodistillation. Results and DiscussionAnalysis of variance showed that the effect of the diversity among the genotypes on morphological, agronomical and essential oil yield parameters of wild mint was significant (P≤0.01). The results of this study showed that Mentha longifolia L. herb has a high diversity under the same culture conditions among genotypes collected from 20 regions of Iran. Correlation result shows that vegetative organs have more effect on the essential oil content than the reproductive organs. This may be due to the distribution of essential oil accumulation and storage sites, which requires further research in this regard. The study of vegetative and reproductive characteristics suggests that the genotypes of the dry and semi-arid climates have different conditions, which may causes the separation of their genotypes compared with the other genotypes. The bi-plot, based on PC1 and PC2, reflects the relationships between the studied genotypes. The results of bi-plot of cluster analysis confirmed that genotypes were divided into two main groups based on agronomical and morphological traits. Conclusion Finally, plants of genotype G13 belongs to Hormozgan province and then G16 genotype belongs to Khuzestan province were selected because of more biomass, more aerial part volume and also the most essential oil performance compared to the other genotypes. Desirable traits for the aerial part such as the time of flowering, leaf length, leaf width, plant height, the highest number of leaves in the stem and internode distance are important traits that should be considered. In addition, the cultivation of these genotype in order to the further production can be the great help in the domestication of this species and, given the fact that the diversity is a precursor of breeding, this research can be an introduction for future breeding operations. However, further research is needed to confirm the phytochemical superior genotypes.
Ornamental plants
Nahid Zomorrodi; Mahmood Shoor; Ali Tehranifar; Morteza Goldani
Abstract
Introduction Since the beginning of the industrial revolution, the indiscriminate consumption of fossil fuels has led to a dramatic increase in the concentration of atmospheric carbon dioxide. Over the past few decades, the concentration of atmospheric carbon dioxide has increased from 280 to 370 ...
Read More
Introduction Since the beginning of the industrial revolution, the indiscriminate consumption of fossil fuels has led to a dramatic increase in the concentration of atmospheric carbon dioxide. Over the past few decades, the concentration of atmospheric carbon dioxide has increased from 280 to 370 ppm and is expected to increase by about 1.8 ppm each year. Carbon dioxide, such as light, appropriate temperature, water and nutrients, is one of the essential nutrients needed by plants, which is currently less than required by plants. In general, plants need to absorb water from the soil and carbon dioxide from the atmosphere and use it in photosynthesis, which This is done by absorbing carbon dioxide through the through the pores. In general, stomatal properties have a major influence on the response of plants to carbon dioxide treatment. Leaf morphology, including stomatal density, may have a significant effect on the response of plants to carbon dioxide. There seems to be a great deal of variation among plant species in terms of how stomata density changes with increasing CO2 concentration. The opening and closing of the stomata through carbon dioxide absorption, regulates the amount of water wasted when adverse environmental conditions. In fact, increasing carbon dioxide in plants reduces stomatal conductance and transpiration, increases water use efficiency, photosynthesis rate and higher light utilization efficiency. Materials and Methods This study was conducted as a split plot experiment based on a completely randomized design with three replications in the research greenhouse of Ferdowsi University of Mashhad. Treatments included three concentrations of carbon dioxide (380 ppm as control, 700 and 1050 ppm) as the main plot and two species of ornamental ficus (Benjamin and Elastic) as sub plots. At first, cuttings were rooted in boxes containing washed sand infused with carbendazim for 8 weeks. After rooting, the cuttings were transferred to culture media containing appropriate soil mixture and exposed to different concentrations of carbon dioxide for 16 weeks. Were affected. Mean daily temperature of 25 and mean night temperature of 18 °C and 65% humidity were considered equal for all treatments. Then, after the treatments, Stomatal traits were measured. Results and Conclusion The results showed that high concentrations of carbon dioxide can affect the anatomical traits of Ficus ornamental species. In this study, the results obtained from the analysis of variance of the studied traits showed that the effect of different concentrations of carbon dioxide was not significant only for the stomatal index, but for other traits studied in this study. The main effect of carbon dioxide concentration was significant at 1% probability level.The results showed that the traits of stomata diameter in plant species and different concentrations of carbon dioxide were significant at 5 and 1% probability levels, respectively. Also with increasing the concentration of carbon dioxide the diameter of the stomatal decreased so that the highest stomatal diameter was related to the concentration of 380 ppm and the lowest to the concentration of 1050 ppm. In fact, increasing the concentration of carbon dioxide from the level of 380 to 1050 ppm led to a decrease of 19.91 percent in the diameter of the stomatal. Increasing the concentration of carbon dioxide in the environment of plants, initially increases the slope of the concentration of carbon dioxide between the surrounding air and the chamber under their stomata, and then more carbon dioxide through the pores leads to a decrease in the slope due to the abundance of carbon dioxide in the chamber below the stomata, This action reduces the diameter of the stomatal. As the concentration of carbon dioxide increased the stomatal cell density and stomatal area. Among the high concentrations of carbon dioxide the concentration of 700 ppm affected most of the traits, including stomatal diameter, stomatal area, epidermal cell density, stomach length and stomach width. though there was no significant difference between high concentrations of carbon dioxide (700 and 1050 ppm). According to the results of this study, it seems that anatomical traits are influenced by environmental factors and are not recognized as a hereditary factor. Among the species, the elastica species showed the most reaction to carbon dioxideal. Conclusion In general, clarifying the stomatal response to carbon dioxide concentration is important for understanding the stomatal physiology and gas exchange between vegetation and the In general, stomatal properties have a major influence on the response of plants to carbon dioxide treatment. Carbon dioxide at appropriate concentrations can increase growth and also affect the stomach properties to allow the plant to adapt to environmental conditions.
Ornamental plants
Rasul AbaszadehFaruji; Mahmood Shoor; Ali Tehranifar; Bahram Abedy
Abstract
Introduction Unbalanced and frequent use of chemical fertilizers and pesticides results in the degradation of soil physicochemical properties, loss of soil-born organisms, reduction of quality of produced crops and reduction of yield plant. Nowadays, due to environmental considerations of chemical ...
Read More
Introduction Unbalanced and frequent use of chemical fertilizers and pesticides results in the degradation of soil physicochemical properties, loss of soil-born organisms, reduction of quality of produced crops and reduction of yield plant. Nowadays, due to environmental considerations of chemical fertilizers, use of organic acids for quantitative and qualitative improvement of crops has been increased. Humic materials are natural organic compounds that contain 50 to 90% of organic matters of peat, wood coal and rotten material, as well as non-living organic matters of aquatic and terrestrial ecosystems. Humic compounds indirectly increase soil fertility by providing micro- and macro-elements for root, improving soil structure, increasing medium permeability to water and air, increasing soil microbial population and beneficial microorganisms, increasing cation exchange capacity and the ability to buffer pH of medium or nutrient solution, and providing some special substances for plant roots such as nucleic acids and acetamides.Materials and Methods In order to investigate the influence of humic and fulvic acids on some growth characteristics in ornamental plant of Scindapsus spp., an experiment was conducted based on a completely randomized design with three replications at greenhouse in Ferdowsi University of Mashhad during 2014-2015. The first factor was humic acid in four levels of 0, 0.2, 0.5, 1 g/l, and the second factor was fulvic acid in four levels of 0, 0.2, 0.5, 1 g/l. Cuttings were taken from the plant in late March. Two weeks after transferring the rooted cuttings to pot, the treatments were applied on plants via fertigation. The traits measured in the experiment included plant height, mean number of nodes, internode length, leaf number, leaf length, leaf width, leaf area, root length, root fresh weight, leaf fresh weight, shoot fresh weight, aerial organ fresh weight, root volume, aerial organ volume, root dry weight, leaf dry weight, shoot dry weight, aerial organ dry weight, fresh and dry weights ratios of aerial organ to fresh weight. Statistical analysis of data was performed by 8-JMP software. LSD test was used to compare the means of the data.Results and Discussion Based on the results obtained, the combined use of humic acid and fulvic acid had a significant effect on height, fresh and dry weights of leaf, shoot, aerial organ and root, number of node and leaf and volume of aerial organ, fresh and dry weights of root, length and volume of root and the ratio of fresh and dry weights of aerial organ to root. Thus, combined use of humic acid and fulvic acid caused an increase in all the measured traits compared to the control treatment. Furthermore, an increase was observed in the length, width, and area of leaf, and internode length as the result of application of humic substances when compared to the control treatment. Organic fertilizers increase plant growth by improving soil conditions and increasing availability of plant to nutrients. Humic compounds cause changes in the specific distribution of cytokinins, polyamines and ATP by affecting the activity of root H+-ATPase and the distribution of root nitrate in the stem, thus affecting the growth of the plant stem. Humic materials increase plant growth by using different mechanisms such as hormonal effects, direct effect on plant cell metabolism, increase of cell division, chelating power and nutrient uptake, increase of soil ventilation and enhancement of plant photosynthesis by increasing Rubisco enzyme activity. Increasing nitrogen uptake leads to the increase in the growth of shoots and aerial organs. It also increases the number of branches in plants and increases the production of dry matter by increasing the production of photosynthetic materials.Conclusion In general, according to the results of this experiment, it can be concluded that application of humic substances (humic acid and fulvic acid) together, improved the growth characteristics of the plant and led to the better growth of the plant; therefore, these materials can be a good alternative to plant growth-stimulating chemical fertilizers.
Growing vegetables
Seyyed Ali Yaqoobi; Seyyed Hossein Nemati; Majid Azizi; Mahmood Shoor
Abstract
Introduction Storage potential is an important characteristic for onion. Annually, a large quantity of worldwide onion production deteriorated during storage. The storage ability of onion is influenced by various endo- and exogenous factors including cultivar and storage conditions specially, temperature. ...
Read More
Introduction Storage potential is an important characteristic for onion. Annually, a large quantity of worldwide onion production deteriorated during storage. The storage ability of onion is influenced by various endo- and exogenous factors including cultivar and storage conditions specially, temperature. Based on literature, there is considerable genetic variation for onion storability in onion germplasms from different origins. Rivera Martínez et al. (2005) evaluated the storability of 18 local and 4 commercial onion cultivars in Spain. Their results showed that there was significant variation for storability among different onion cultivars, and interstingly the local cultivars had more storability than commercial ones. Onion storage could also affected by environmental conditions such as temperature. Benkeblia et al. (2000) studied the effects of various temperatures on respiratory parameters of onion. Their finding showed onion respiration were raised by increasing temperature. Likewise, the positive effect of higher temperature on enhancing the growth of sprouts and elevating transpiration has been reported (Miedema, 1998; Yoo et al., 1997). Although, Afghanistan is considered to be one of the origins of onion (Brewster, 1994) there are no reports on estimating the storability of Afghan local cultivars under different temperature conditions. So this research has been conducted to study the effects of various temperatures on storability of native onion cultivars of Afghanistan.Materials and Methods In this research, the plant materials consisted of 10 onion cultivars consisting eight local varieties “Hanaaie Harat”, “Zard-e-Harat”, “Ghermrz-e-Harat”, “Mazar-e-Sharif”, “Kabul”, “Sar-e-Pul”, “Ghonduz” and “Balkhaab” originated from Afghanistan, an Iranian cultivar (“Ghermez-e-Azarshahr”), and a commercial cultivar “Sweet Grano”. The cultivars were stored at two different temperature regimes (5 ºC and ambient temperature), during six-time intervals of 20 days. The average temperature of ambient storage was 13 °C ranging from 8-18 °C. The experiment lasted from November 6th, 2011 to March 5th, 2012. This research was performed in a completely randomized design based on split factorial design, with three replications. For each replication, 50 healthy non-sprouted bulbs were packaged in plastic nets. Storage potential related characteristics such as sprouting percentage, weight loss percentage, sprout length, and sprout weight/bulb weight ratio in 20 days intervals were measured. All data were subjected to analysis of variance (ANOVA) using SAS statistical software. Mean comparisons were calculated at 5% probability level using LSD when the F-value was significant (Fisher’s protected LSD).Results and Discussion The results showed that there were significant differences among cultivars for storage characteristics (weight loss percentage, sprouting percentage, length of sprouts and sprout weight/bulb weight ratio). “Ghonduz” and “Ghermrz-e-Harat” local cultivars had the most and least storage ability, 50% of bulb sprouting after 105 and 35 days, respectively. Rivera Martínez et al. (2005) and Ramin (1999) also reported Spanish and Iranian local cultivars had more storability compared to commercial cultivars. In 5 °C, weight loss of onion bulbs followed a linear model during storage period. But, in ambient storage, it was higher at the beginning and the end of storage period, showing the adverse effects of high temperatures on bulbs weight loss during storage. The interaction between cultivar and time was also significant. It showed onion weight loss differs in various intervals. It could be attributed to the genetic variation and morphological difference such as number and thickness of dry scales of onion bulbs. In ambient storage condition, onion sprouting percentage showed a sharp increase in early storage intervals and became stable in the late intervals. Under 5 °C treatment, it raised as a linear model with very slow slope. It seems that weight loss and sprouting of onion bulbs in ambient storage is dependent on temperature and relative humidity of environment. This finding is in agreement with previous reports (Baninasab and Rahemi, 2006; Forudi, 2005). The sprout length and the ratio of sprout weight to bulb weight was lower in 5 ºC than ambient temperature. Abdalla and Mann (1963) and Yoo et al. (1997) also reported that smaller sprouts were observed in lower temperatures. Conclusion In this experiment, the effects of temperature on storability of some local cultivars of onion originated from Afghanistan were studied in different intervals. It was found that the storage potential of onion bulbs could be influenced by genetic factors and environment conditions such as temperature. Findings of this research showed that sprouting percentage, weight loss percentage and onion sprout growth were less under 5 °C treatment than ambient temperature. Therefore, it was concluded that storing onion bulbs in low temperature conditions can reduce the onion spoilage and improve their storage life. Additionally, cultivars showed highly significant variations for all characteristics related to storage ability. Our findings showed that some local cultivars are more storable than commercial cultivars. Among the cultivars, “Ghonduz” cultivar has more storage potent as compared to all studied cultivars. Our results confirmed that local cultivars can be a good source of desirable genes related to storability. Subsequently, they can exploited to broaden the genetic base of breeding matreials.
Ornamental plants
Elham Saeedipooya; Ali Tehranifar; Ali Gazanchian; Fatemeh Kazemi; Mahmood Shoor
Abstract
Introduction
Turfgrasses, as one of the important components of urban landscapes, have played a vital role in this regard. However, the main problems of turfgrass development are the cost of turfgrass seeds, maintenance costs such as moving, as well as the high water requirement in arid and semi-arid ...
Read More
Introduction
Turfgrasses, as one of the important components of urban landscapes, have played a vital role in this regard. However, the main problems of turfgrass development are the cost of turfgrass seeds, maintenance costs such as moving, as well as the high water requirement in arid and semi-arid regions. Thus, the reduction of lawn culture in the landscape is one of the decision has taken in parks and green spaces organization of Tehran, Isfahan and even Mashhad. For over ten years, researchers have been looking for alternatives to conventional grass lawns to reduce the high cost of maintenance especially irrigation cost in urban landscapes. According to many researches, one of the potential ground cover alternatives that might be used instead of turfgrass is White Clover. Clover (Trifolium spp.) from Fabaceae family is a genus of about 300 species.
Materials and Methods
The aim of this experiment was to compare three common turfgrasses with two clover varieties as turf replacement to reduce landscape maintenance cost specially moving cost. So, some growth and qualitative factors of clover lawn: Trifolium repens var. Calway and Trifolium repens var. Pipolina (micro clover) and three turfgrasses of Festuca arundinacea L. and Lolium perenne L. and commercial sport turf mixture (from NAk-Nederland Ltd.) were compared together. This research was conducted in randomized complete block design with three replications in the research field of the Department of Horticultural Science and Landscape Engineering‚ Faculty of Agricultural‚ Ferdowsi University of Mashhad‚ Mashhad‚ Iran, during 2016 and 2017. The site (59º 38′ E and 36º 16 ′ N; elevation 989 m) is located in an arid and semi- arid region with mean annual rainfall 233.8 mm and long term averages of maximum and minimum temperature are 22.5 ºC and 9.3 ºC‚ respectively. Turfgrass plots were established by directly sowing the seeds in April, 2016. The planting rate of the seedling considering their pure live seeds (PLS) were 45 g.m-2 for Lolium perenne, 34 g.m-2 for Festuca arundinacea, 6.5 g.m-2 for Trifolium repens, 5.5 g.m-2 for micro clover and 39 g.m-2 for commercial mixture of sport turf. The plots were 1 m2 (1m×1m) in size and were prepared after plowing and leveling the soil. The seeds were hand sown and covered with a thin layer of leaf compost and sand.
Results and Discussion
According to the results in the first evaluation of emergence percentage, Lolium perenne had the highest emergence percentage. After 36 days from culture, all plants had 92-98 % coverage which did not have any significant difference among grasses with clover lawns. In terms of density, uniformity and weed density, there was no significant difference between the studied plants. In the other hands, white clover showed the best quality after clipping in both years. At the point of growth index, which have done in this experiment by measuring height and dry weight of clipping, grass lawns had the higher growth index in compered to clover lawn in both years. Festuca arundinacea and Lolium perenne had the highest growth index and white and micro clover had the lowest growth. Also, with air warming, Festuca arundinacea became dominated plant in height and clipping dry weight. In July, Festuca arundinacea produced the highest clipping dry weight by 40 gr.m-2, Lolium perenne (19.52), commercial sport turf (15.68), white clover (6.24) and micro clover (0.36) gr.m-2.
Conclusion
One of the problems of landscape is reduction of maintenance costs such as mowing. So, the low growth of white and micro clover is a positive factor in reduction of the moving costs than turfgrasses. Also, the coverage and proper density of clover lawns are similar to grass lawns and did not have a significant difference with them. The character of low growth can be effective in reduction of irrigation costs in white and micro clover, which requires more research and examination in future. This is a positive point in the white clover and micro clover that do not need to move or cut every months. Almost, clover moving is recommended for removing their flower. Therefore, it is recommended to use white and micro clover as a replacement with less maintenance costs in landscape. Finally, the results of cultivation of grass and clover as monoculture in this study can be used to produce clover-grass mixtures suitable for the climate of our country (arid and semi-arid regions), instead of importing turf mixtures from European countries.
Ornamental plants
Toktam Oraee; Mahmood Shoor; Ali Tehranifar; Seyyed Hossein Nemati
Abstract
Introduction: The Hollyhock (Alcea rosea) is a summer flowering biennial plant that is native to China and belongs to the Malvaceae family. It is one of the most valuable ornamental plants, whose 36 species are cultivated in Iran. It is an increasing garden escape, especially in urban areas, and is usually ...
Read More
Introduction: The Hollyhock (Alcea rosea) is a summer flowering biennial plant that is native to China and belongs to the Malvaceae family. It is one of the most valuable ornamental plants, whose 36 species are cultivated in Iran. It is an increasing garden escape, especially in urban areas, and is usually found at foot of walls, in ruderal areas, and in cracks of pavements and old walls. Also, it is sometimes seen on riverbanks (for instance on dikes of the river Maas), dumps or road- and railway banks. Alcea rosea has been used as an herbal plant in folk medicine for treatment of different diseases such as common cold and cough. This plant is antiphlogistic, astringent, demulcent, diuretic and expectorant. Drought is the most significant environmental stress in agriculture worldwide, and improving yield under drought is a major goal of plant breeding. Seed germination and early seedling growth are potentially the most critical stages for water stress. When subjected to drought stress, plant metabolism is interrupted or inhibited by increasing reactive oxygen species (ROS) and lipid peroxidation, resulting in reduced germination, weaker root and shoot growth and even mortality. Plants have evolved oxygen-scavenging systems consisting of non-enzyme antioxidant metabolites, such as proline and various antioxidant enzymes including superoxide dismutase, peroxidase and catalase.Materials and Methods: In order to examine the effect of drought stress on germination indexes, various antioxidant enzyme changes and non-enzyme antioxidant metabolites in Alcea rosea, an experiment was conducted in complete randomized design with three replications. The drought stress treatment was conducted in five levels with osmotic pressures 0, -2, -4, -6, and -8 bar and with using PEG (Poly Ethylene Glycol 6000) on two ecotypes of Alcea rosea (ecotype 1= Mashhad and ecotype 2= Tehran). The seeds are at first sterilized with hypo chloride sodium for two minutes and then washed superficially three times with distilled water. 25 seeds were transferred to a glass petri dish with 10 cm diameter, and for the duration of the experiment, 5 ml solution with different levels was added to each petri dish. After 14 days at 25±1 ºC temperature, the number of geminated seeds in each day was counted and recorded. In the first part of the experiment, after the end of the germination period, the following growth parameters were measured: germination percentage, germination rate, root and shoot length, and the fresh weight of seedling. In the second part, the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), malondialdehyde content, lipid peroxidation in terms of malondialdehyde (MDA) content, and proline index were measured.Results and Discussion: The ecotype, drought treatments and their interaction had significant effects on growth parameters (germination percentage, germination rate, radicle and plumule length, and seedling fresh weight), as well as physiological and biochemical parameters (SOD, POD, CAT, MDA and proline). The highest germination parameters were recorded at Mashhad ecotype. Germination percentage and germination rate were severely affected by drought. Maximum percentage of germination (36) was recorded at control group followed by 32.1 at -2 bar and -4 bar PEG treatments in ecotype 1. Germination percentage in two ecotypes further declined to 33% at -8 bar compared to the control treatment. In both ecotypes, plants had the highest germination rate in control media (zero osmotic potential) but germination rate decreased significantly by decreasing water potential. Germination rate of control seeds of ecotype 1 was 11.7, while that of ecotype 2 was 8. 3. Germination rate in two ecotypes further declined to 56% and 38 %, at -8 bar compared to the control treatment, respectively. Ecotype 2 displayed a significant reduction in radicle and plumule length compared to the ecotype 1. Generally, the radicle and plumule length decreased significantly in relation to the drought stress caused by PEG. Ecotype 2 in -8 bar PEG treatment had the highest (41 and 32%) decrease in radicle and plumule length compared to the control temperature. In two ecotypes (Mashhad and Tehran) of Alcea rosea, increasing PEG concentrations resulted in a decrease in fresh and dry weights. Water absorption is the first germination stage. Due to the probable resistance of the ecotype one, water absorption rate is higher, and as a result, the percentage and rate of germination have increased. Ecotype 1 exhibited higher leaf SOD activities in response to -2 bar compared to -8 bar, but the SOD activities in ecotype 2 showed a general increase trend with increases in the PEG concentration. Drought stress resulted in lower antioxidant enzyme activities (POD) in leaves of both ecotypes compared to that observed at the control treatment, but the activity of CAT increased with the increase of drought stress. In both ecotypes, exposure to -8 bar resulted in significantly higher leaf MDA activities. Plants exhibited higher proline in response to -8 bar treatment compared to the control. By increasing the PEG concentration from control to -8 bar, proline content increased about 90 percent. In this experiment, drought stress reduced the rate and germination percentage and delayed subsequent plant deployment. When plants are subjected to drought stress, their metabolism is interrupted or inhibited by increasing reactive oxygen species (ROS) and lipid peroxidation, resulting in reduced germination, weaker root and shoot growth and even mortality. The recent experiment showed that the activity of two superoxide dismutase and peroxidase enzymes decreased with increasing drought stress, and the activity of the catalase enzyme increased; this is in agreement with the results reported by other studies. On one hand, the increase in the activity of the catalase enzyme indicates that it is perhaps the most important enzyme involved under drought condition, which increased over the course of 14 days. On the other hand, limiting the activity of enzymes and increasing the amount of proline showed that increasing the resistance to drought stress in the plant depends on the accumulation of contaminating substances such as proline.Conclusion: Due to the higher resistance of the ecotype 1 and increase in water absorption, the percentage and rate of germination were increased. If water absorption is disturbed by the seed, the germination activity is slowly applied and the later growth of the roots will decrease the germination rate. Therefore, it seems that Mashhad ecotype with increase of catalase and proline has the highest drought tolerance compared to the other ecotype at germination stage. There was a significant correlation between germination percentage with SOD and POD.
Akram Amiri; Mahmood Shoor; Mina Taghizadeh; Seyyed Hossein Nemati; Ali Tehranifar
Abstract
Introduction: The genus of African violet is the most common genus known among the plants of Gesneriaceae family. This genus has beautiful leaves and flowers that are zygomorph. African violet (Saintpaulia ionantha) is a famous ornamental plant due to its various colors and shapes that an excellent model ...
Read More
Introduction: The genus of African violet is the most common genus known among the plants of Gesneriaceae family. This genus has beautiful leaves and flowers that are zygomorph. African violet (Saintpaulia ionantha) is a famous ornamental plant due to its various colors and shapes that an excellent model system for in vitro regeneration studies because of its tissue culture amenability.Besides the importance of this plant in plant production industry and increasing need for new plant varieties with desired traits, more studies for creating African violet with new features by increasing the ploidy level under the in vitro conditions were not done until now. Polyploidy is a widespread phenomenon in the evolution of flowering plant and a key in plant speciation and diversification. Polyploid plants have been used in plant breeding programs for developing superior varieties and restoring the fertility of interspecific or intergeneric hybrids. Polyploidy in ornamental crops were successfully obtained under in vitro conditions. The chemical colchicine can be used as the most effective substance to obtain polyploid plants. In vitropolyploidization has number of advantages such as treatment of more plants with less material, control of test conditions, lower toxicity of chemicals and high success rate. This study with the aim of polyploid induction was carried out by different concentrations of colchicine at various periods under in vitro conditions.Materials and Methods: The best treatment for the shoot regeneration and proliferation was MS medium with 2 mg/l BA after optimizing the tissue culture process. The study performed as follows: plantlets grown under in vitro in proliferation stage were treated with colchicine. The experiment was carried out in a 2-factorial manner based on a completely randomized design and factors were colchicine concentration at 0.02, 0.05, 0.1% and treatment duration for 18, 24, 48 hours. Evaluated characters of regenerated plants were as follows: plantlets survival percentage (the first month, the second month and the third month), morphological traits (include leaf number, petiole length, leaf length, leaf width, petiole diameter, leaf thickness and variation in form, vein, tip and margins leaf), reproductive traits (flower diameter (mm), number of petal, number of flower in inflorescence, height of inflorescence (mm)), microscopic epidermal cells in samples of diploid and tetraploid and ploidy levels. Assessment of flow cytometery was also used for all of the treated plants with colchicine and some diploid control plants and were expressed in the form of the percentage of diploid, mixoploid and tetraploid plants of African violet.Results and Discussion: Results indicated that tetraploidy induction successfully was changed different morphological and cytological characteristics. Plantlets of treated with 0.02% colchicine in all three times only survived after three months, and with increasing treatment time, plantlets survival percentage was reduced. Thus 0.02% colchicine treatment for 24 hour found effective in inducing in vitro culture polyploidy of African violet. Comparison of the leaves of tetraploid with diploid plants indicated that the leaves of tetraploid plants in length and width were bigger than the diploid ones. The selected tetraploid plants showed a more compact shape than the control plants. Other results revealed that the treated plants with colchicine showed delayed growth. The assessment of microscopic indicated that the epidermal cells of tetraploid were larger than diploid. The results of flow cytometery evaluation showed that with increasing duration of colchicine, the number of diploid plants reduced and were added to mixoploid and tetraploid plants. Most plants were mixoploid.Conclusion: The results of this study showed that the diploid and tetraploid plants indicated significant differences in term of morphological traits like leaf number, petiole length, leaf length, leaf width, petiole diameter, leaf thickness and variation in form, vein, tip and margins leaf, reproductive traits like flower diameter, number of petal, number of flower in inflorescence and also size of epidermal cells and flow cytometery evaluation. These differences can be suitable criterion for separating diploid and polyploid plants from each other. Generally, the combination of tissue culture methods and tetraploidy induction can be used as a rapid strategy for achieving new forms and properties of regenerates in vitro on African violet.
Atiyeh Oraee; Ali Tehranifar; Ahmad Nezami; Mahmood Shoor
Abstract
Introduction: Climate change is expected to have impacts on ecosystems worldwide. During the last 50 years, the greatest warming trends have been observed in winter months and significant increases in both the occurrence and duration of winter warming have already been reported. In general, predicted ...
Read More
Introduction: Climate change is expected to have impacts on ecosystems worldwide. During the last 50 years, the greatest warming trends have been observed in winter months and significant increases in both the occurrence and duration of winter warming have already been reported. In general, predicted future climate change scenarios will result in less than optimal cold acclimation conditions, leading to decreases in freezing tolerance and predisposition of plants to winter injury. Nonetheless, it is not clear whether water stress induced during cold hardening is of high importance in inducing freezing tolerance in plants or it is an integral part of typical cold hardening process. Since rapid and effective assessment of plant cold tolerance is important for researchers and also field trials have no regular process and have high error, different kinds of artificial freeze tests such as survival percentage test and regrowth after imposing stress have been developed.
Materials and Methods: In order to evaluate the effect of drought stress on plant freezing tolerance of viola, a factorial experiment was conducted based on completely randomized design with three replications in faculty of Agriculture, Ferdowsi University of Mashhad. Experimental factors include three water treatments (80% FC, 60 % FC and 40% FC) and 10 temperature levels (Control, from zero to -24 with 3 °C intervals). Pansy seeds sown in a nursery in the summer of 2015 and after reaching the five-leaf stage in the fall plants were transferred to the pots. After the potted plants spend cold acclimation in nature conditions, plants were subjected to water stress including control (80% FC), 60% and 40% FC for two weeks. After drought stress, whole plants were sampled for freezing tolerance assessment and they were transferred to the freezer thermos-gradient. After applying the stress, electrolyte leakage, lethal temperature 50 according to the electrolyte leakage percentage (LT50el) were measured. One months later, survival percentage, lethal temperature 50% of plant according to the survival percentage (LT50su), leaf area, number of flower and bud, dry weight (dry weight of vegetative, reproductive, root and total) and reduced dry matter temperature 50 (RDMT50) were evaluated.
Results and Discussion: Electrolyte leakage percentage (EL %) and survival (%) were significantly (p ≤ 0.01) affected by irrigation treatments in the freezing conditions. By lowering the temperature from 20 to -24 °C, the EL% significantly increased in three irrigation treatments and it increased in 80% FC compared to 60% (by 16%) at -24°C. plants under 60% FC treatment exhibited higher baseline freezing tolerance (LT50 of −18.4 °C) compared to 80% FC (LT50 of −11.8 °C).Treated plants (except 80% FC) were able to tolerate lowering the temperature to -21°C. Lowering the temperature to -24°C caused the total mortality. According to the LT50su index, 60% FC treatment was less than compared to other treatments. Leaf area significantly increased by 16%, respectively, when plants were under water deficit (60% FC) compared to 80% FC at 0 °C. The maximum number of flower were seen in 60% FC at – 3 °C and the maximum number of bud were observed at 0 °C. The results showed that dry weight was significantly (p ≤ 0.01) increased by drought stress in the freezing conditions. Plants under 60% FC at 0 °C had the highest increase (55, 62 and 64%, respectively) dry weight of vegetative, reproductive and total growth, respectively compared to control. By lowering the temperature to -18 °C in 80% FC vegetative, reproductive and root growth decreased (36, 38 and 42%, respectively) compared to control plants. RDMT50 significantly affected by drought stress. There were significantly correlation between EL with LT50el and RDMT50 (r =0.25* and r = 0.72**, respectively). In total, plants under 60% FC showed highest freezing tolerance compared to the other treatments.
Conclusions: In the current study, we found that the greatest gain in freezing tolerance was associated with cold and that the effect of drought stress on freezing tolerance varied with temperature. Drought stress resulted in an improvement in freezing tolerance of viola (lower LT50). Among the different parameters evaluated, 60% FC treatment at 0 °C most consistently induced increases in survival percentage, reproductive and vegetative growth which suggested a synergistic effect between drought exposure and low temperature. Higher dry weight of viola plants may contribute to better plant overwintering capacity. In addition, future research should explore the effect of repeated mild drought events on freezing tolerance of acclimated plants, by using strategies such as wilt-based irrigation scheduling, partial root zone drying, and deficit irrigation.
Bahram Abedy; Mohammad Halim Kazemi; Mahmood Shoor; Yahya Selahvarzi
Abstract
Introduction: Pomegranate (Punica granatum L.) is an important fruit crop of the world which native to Iran and Afghanistan. Pomegranate is produced throughout the Afghanistan. However, the most pomegranate orchard is in the south-west and the west region of Afghanistan, in the provinces of Kandahar, ...
Read More
Introduction: Pomegranate (Punica granatum L.) is an important fruit crop of the world which native to Iran and Afghanistan. Pomegranate is produced throughout the Afghanistan. However, the most pomegranate orchard is in the south-west and the west region of Afghanistan, in the provinces of Kandahar, Helmand, Nimroz, Farah, Kapisa, Nangarhar and Herat. The major storage problems are desiccation of the fruit resulting in a brownish colored tough peel and arils, weight loss, chilling injury and fungi decay. Further, the storage temperature recommended for pomegranates has varied from 0 to 10°C from two weeks to seven months depending on the cultivar. Storing pomegranate at low temperature with packaging minimized chilling injury and maintained fruit quality. Heat treatment causes changes in fruit ripening, such as the inhibition of ethylene synthesis and action of cell wall degrading enzymes, due to changes in gene expression and protein synthesis. Pre-storage hot water treatment increases fruit quality and reduce fruit weight loss and chilling injury in pomegranate.
Method and Materials: Fully mature, pomegranate (Punica granatum L.) fruits cv. ‘PoostNazuk Kandahar’ was harvested form Kandahar province in 2014. They were immediately transported by plane to the laboratory of Horticultural Science, Ferdowsi University of Mashhad Iran. After washing and initial measurements, half of fruits were immersed in a hot water (50 and 25°C) bath for three minutes. Hot water treatment fruits were packaged in plastic zippers and the others half were without packaging. All the treated fruits were transferred to cold storage at 5±1°C and a relative humidity of 85 to 90% for four months. Every 30 days each the physico-chemical characteristics of pomegranate were evaluated. Experimental design was split factorial by completely randomized design with four replications. All analyses were performed with statistical software (JMP. 8.0, 2009).
Result and Discussion: The results demonstrated that the combination of hot water (HW) and polyethylene packaging was more effective in extending shelf life and reducing pomegranate fruit decay than the application of each treatment alone during long-term cold storage. The HW (50°C) treatment in combination with polyethylene packaging had significant effect (p< 0.01) on fruit weight loss and chilling injury index (CI) compared with the water (25°C) and without packaging during storage time. Most of fruit weight loss and CI were 37% and 24.7% that related to water (25°C) treatment and non-packaging, and the lowest were in order 1.6% and 2.2 % related to polyethylene packaging and HW (50 C°) treatments. Reduction in weight loss and CI by polyethylene packaging have been reported by other researchers [3, 4, 5, 9, 25 and 31]. HW (50°C) treatments reduced the expanding of fungi decay significant (p< 0.01) caused by use of polyethylene packaging after four months storage. This is agreement with Talaie et al [4], Artés et al [5] and Moradinezhad and Khayyat [31]. The effect of packaging on total phenolic compounds was also significant (p< 0.01). The total phenolic compounds of pomegranates showed an increase during the 120 days storage. Fruit without packaging had higher (443.25 mg/Lit) total phenolic compounds than the fruit stored in polyethylene package (332 mg/Lit), reaching a maximum accumulation, which is in agreement with the findings of other researchers [15, 24, and 38]. The HW treatment alone or in combination with packaging had no significant effect on TSS, TA and pH as compared to the water (25°C) and without packaging. At the end of storage, there was a significant increase in TSS and pH, and significant decreased in TA fruit juice after 4-month storage. Our finding is in agreement with previous reports [4, 5, 25 and 34], however was in contrast with the results of Nanda et al [33] who reported higher retention of TA in shrink film wrapped pomegranates, when compared to control fruit. One of the reasons for increase in TSS probably is decrease of fruit juice and its increase in concentration, during the storage time [1]. Rastegari et al [2] reported the increase in pH of fruit juice during storage, which is probably due to the breakdown of organic acids during the respiratory process.
Conclusions: Combined pre-storage treatments of HW and polyethylene package have more benefits than their individual application on maintaining quality and extending pomegranate fruit shelf life in prolonged cold storage. The pomegranate fruit cv. ‘PoostNazuk Kandahar’ could be stored for at least 20 weak under this combined treatment, effectively extending their marketing period with less decay. However, the unpackaged fruit, spoiled totally by 13 weak. Therefore, it is concluded that a combination of HW and polyethylene package treatment is a simple and low-cost method that has the ability to improve quality and postharvest life of pomegranate fruit cv. ‘PoostNazuk Kandahar’ during cold storage. However, more research is needed in this regard.
Maryam Kamali; Mahmood Shoor; Seyyed Hossein Nemati; Amir Lakzian; Hamidreza Khazaie
Abstract
Introduction: Water deficiency is one of important abiotic stresses that severely effects on plant growth. The effects of drought range from morphological to molecular levels and are evident at all phenological stages of plant growth at whatever stage the water deficit takes place. Growth is accomplished ...
Read More
Introduction: Water deficiency is one of important abiotic stresses that severely effects on plant growth. The effects of drought range from morphological to molecular levels and are evident at all phenological stages of plant growth at whatever stage the water deficit takes place. Growth is accomplished through cell division, cell enlargement and differentiation, and involves genetic, physiological, ecological and morphological events and their complex interactions. The quality and quantity of plant growth depend on these events, which are affected by water deficit. Cell growth is one of the most drought-sensitive physiological processes due to the reduction in turgor pressure. Under severe water deficiency, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. Impaired mitosis, cell elongation and expansion result in reduced plant height, leaf area and crop growth under drought. Chlorophyll content is one of the major factors affecting photosynthetic capacity changing in chlorophyll content of plant under drought stress has been observed in different plant species and its intensity depends on stress rate and duration. Chlorophyll content of leaf is indicator of photosynthetic capability of plant tissues. In the mid-80s, RWC was introduced as a best criterion for plant water status which, afterwards was used instead of plant water potential as RWC referring to its relation with cell volume, accurately can indicate the balance between absorbed water by plant and consumed through transpiration.
Materials and Methods: To study the effects of drought stress on three varieties of petunia, a factorial experiment based on randomized complete block design with four replications was conducted. The treatments consisted of four irrigation levels ((100% control), 80%, 60% and 40% of field capacity) and three varieties of petunia (Supercascade, Tango blue and Tango white). After planting and transplanting and after full deployment in the pot, water stress treatments were applied on three varieties of petunias. At the end of each week fully blossomed flowers were counted, flower diameter, peduncle length and corolla length were measured. In order to determine the stability of the cell membrane electrolyte leakage index was measured. Specific leaf area (SLA) was determined. The amount of chlorophyll a, b, total and carotenoid and relative water content in the leaves were measured. Statistical analysis was performed using the software MSTAT-C. EXCEL was used for diagramming software. Means were compared using LSD test with a 0.05 significance level.
Results and Discussion: Results indicated that interaction impacts of variety and irrigation on dry weight, leaf area, flower number, flower diameter, length Corolla, chlorophyll content, electrolyte leakage, relative water content and proline content was significant. The most shoot dry weight (76/1 g) was in control stress (100% FC) and Tango White variety. Also the most leaf dry weight (07/2 g) and root dry weight (g 43/0) were in Tango Blue variety. With increasing drought stress from 100% FC to 40% FC, leaf area decreased in Supercascade from 314 to 49, in Tango Blue from 405 to 44 and in Tango White from 459 to 69 cm2. In 80% FC, electrolyte leakage increased in all varieties (Supercascade variety 2%, Tango Blue 10% and in Tango White 3%) compared to control. Also electrolyte leakage increased in Supercascade 17%, in Tango Blue 9% and in Tango White10% in 40% FC compared to control. Comparison of interaction effects of drought stress and variety also showed the most proline had accumulated in Tango White and drought 40% of field capacity and then in Tango Blue and stress 40% of field capacity. Generally two varieties of Tango Blue and Tango White in control irrigation had better growth and also in low irrigation were more resistant.
Homa Azizi; Parviz Rezvani Moghaddam; Mahdi Parsa; Reza Khorasani; Mahmood Shoor
Abstract
Introduction: Meadow saffron (Colchicum) is a non-domesticated medicinal plant, rich in isoquinoline alkaloids. These alkaloids are used in medicines mainly for their anti-gout and myorelaxant properties. Meadow saffron has an unusual biology that does not favor cultivation. Flowers of Meadow saffron ...
Read More
Introduction: Meadow saffron (Colchicum) is a non-domesticated medicinal plant, rich in isoquinoline alkaloids. These alkaloids are used in medicines mainly for their anti-gout and myorelaxant properties. Meadow saffron has an unusual biology that does not favor cultivation. Flowers of Meadow saffron appear in September and fruits mature in June. The corms enter dormancy phase in winter (January to March) and after fruiting in summer (June to September). Each year, a mother corm produces one daughter corm, or sometimes two daughter corms. The uptake of mineral element in plant is a complex process that governed by numerous factors influencing each other. nitrogen, phosphorus, and potassium application can significantly increase the yield and improve the quality of plants. Meadow saffron need more consider in fertilization managements in comparison with other crops because it has shallow roots than other crops and exposes to more problems in uptake of immobile nutrients in the soil. The object of this study was to determine the effect of different fertilizers and mother corm weight on yield characters of Colchicum kotschyi Boiss.
Materials and Methods: This experiment was conducted as factorial layout based on a randomized complete block design with three replications at Research Station, Ferdowsi University of Mashhad, Iran, in two years, 2012- 2013 and 2013-2014. The Corms of Colchicum kotschyi Boiss. were harvested from natural site of Binalood Mountains during their summer dormancy. The mother corm weight was considered as a factor in the experiment, because of the variation between the collected corms. In order to evaluate fertilizers effect, soil analysis was conducted. So, the experimental factors were: mother corm weight (less than 40 g and more than 40 g), cow manure (0 and 50 t.ha-1), urea (0 and 50 kg.ha-1) and superphosphate (0 and 25 kg.ha-1). Before planting, cow manure and superphosphate were well mixed with soil and urea was added to soil during emergence of leaves. Planting date was 28th August 2012. Planting depth was 12-15 cm and the space between plants was 25 cm. During flowering, flower number was recorded. Plants were harvested when the color of leaves and capsules were changed from yellow to brown, and characteristics such as corm yield, seed yield, biological yield, 1000-seed weight, capsule number, capsule dry weight, seed number, seed dry weight, corm and seed HI were measured. Data analysis was done by SAS Ver. 9. Mean comparisons were done by LSD test at 5% probability.
Results and Discussion: At the first year of experiment, most of transplanted corms did not flower due to transplanting. Therefore, just the results of the second year were presented here. The results showed that mother corm weight had significant effect on the yield (p≤0.05). The weight of daughter corms was increased by increasing mother corm weight, because of more supply of nutrients. The weight of the corm is basically determined by the amount of total food stored in the corm by the plant through the process of photosynthesis. The initial plant growth and its vigor are determined by the amount of food supplied to the growing plant by the corm. The results showed that seed yield characters were affected by the cultivated corm weight. The most flowers per area unit, capsule number per plant, seed number and dry weight per plant were belonged to heavier cultivated corms. The effect of corm weight on corm HI was not significant (p≤0.05), but smaller corms had more seed HI than bigger corms (p≤0.05). The effect of cow manure on most characters was significant (p≤0.05). Corm yield and corm HI increased in cow manure treatment in comparison with control. Organic fertilizers cause improvement of soil structure, better development of roots, regulation of soil temperature and useful microorganisms, supply of nutrients for plant and supports plant in nutrient absorption. Capsule number, capsule dry weight and seed number per plant were not influenced by cow manure. The number of capsules per plant and the number of seeds per capsule were determined during fertilization. The only parameter that can vary during capsule development was the thousand-seed weight. The results showed that seed dry weight per plant, 1000-seed weight, seed yield and seed HI were decreased in cow manure treatment in comparison with control. It seems that cow manure has more effect on vegetative growth and decrease proportion of seed compared to corm in whole plant weight. Meanwhile, the competition between corm and seed for photosynthetic materials may decrease seed dry weight. The effect of superphosphate was significant on some studied characters. Superphosphate utilization was increased corm yield and biological yield compared to control. Many researchers reported that phosphorus that was effective in leaf photosynthesis and carbon metabolism in plants. Phosphorus increased seed dry weight per plant, seed yield and 1000-seed weight. Phosphorus is a very important nutrient in plant nutrition and is more effective in the formation of flower, fruit and seed. Many researches have shown that phosphorus promote reproductive growth.
Conclusion: The results showed that colchicum could have a good response to treatments especially cow manure and superphosphate. It seems that more levels of fertilizers especially urea could improve quantitative and qualitative yield of plant.
Maryam Kamali; Mahmood Shoor; Hassan Feizi
Abstract
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications ...
Read More
Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications in agricultural research, such as in reproductive science and technology, the transfer of agricultural and food waste to energy and other helpful by-products through enzymatic nanobioprocessing.
An important effect of titanium compounds on plants used for improvement of yield (about 10–20%) in various crops. Other effects of titanium on plants are increasing contents of some essential elements in plant tissue; an increase in enzyme activity such as peroxidase, catalase, and nitrate reductase activities in plant tissue, and research has shown increased chlorophyll content in paprika (Capsicum anuum L.) and green alga (Chlorella pyrenoidosa). Nanotechnologyapplication is now widely distributed throughout life, and especially in agricultural systems. Nano particles, because of their physicochemical characteristics, have been considered the potential candidates for modulating the redox status and changing in seed germination, growth, performance, and quality of plants.nano-TiO2 has shown to be potential for agricultural application because of its photocatalytic disinfection and photobiological effects. Also,stalinizationof soils or waters is one of the world’s most serious environmental problemsin agriculture. During initial exposure to salinity, plants experience water stress, which in return reduces leaf expansion. during long-term exposure to salinity, plants experience to ionic stress, which can lead to premature senescence of adult leaves, which led to a reduction in the photosynthetic area available to support plants growth.However,a few studies have been done on the effects of nanoparticles on ornamental plants. Nanosized TiO2 is a frequently used nanoparticle, consequently there has been an exponential increase in data collection on the effects of TiO2 nanoparticles on different species. There is much less information on the effects of nanoparticles on plants compared to animals. Studies of the effects of TiO2 nanoparticles on plants provide information about the positive and stimulating effects as well as any negative impact. In this study, weaimedto findout the phytotoxicity or positive effects of different concentrations of Bulk TiO2 and nanosized TiO2 on plant growth of Petunia hybridain salinity stress.
Material and Method: experiments were done to assess the effect of different concentrationsof bulk and nanosized TiO2 on petunia growthin salinity stress in a factorial test based on completely randomized design with 3 replications in agriculture faculty of Ferdowsi University, Mashhad. There were 3 factors, including1- three concentrations (0, 75 and 150 mM) of NaCl, 2- bulk and Nanosized titanium dioxide and 3- six concentrations (0, 5, 10, 15, 20 and 40 ppm) of TiO2. Titanium dioxide treatments for foliar application was applied 5 times with intervals of seven days (three times before, and twice after starting salinity stress). The experiment was performed at the College of Agriculture, Ferdowsi University of Mashhad. during the flowering, flower number, corolla length, flower diameter and flower fresh weight were measured. At the end of the flowering phase, parameters such as leaf area, shoot and leaf fresh weight, lateral shoot number, leaf number, chlorophyll a, b, total and cartenoidwere measured. The data were subjected to Analysis of Variance, was done using Mstat-C statistical. The means were separated, using LSD test.
Results and Discussion: Results showed that interaction of salinity, bulk and nanosized titanium dioxide and titanium dioxide concentrationsweresignificanton total chlorophyll, cartenoides, biomass, leaf area and flower number. The highest amount of total chlorophyll concentrations was measured in 20 and 40 ppm TiO2 and 5 ppm Nano treatments, respectively. The highest leaf area (608 cm2) was in 15 ppm Nano treatment. Among levels of nano TiO2,foliar application with 5 ppm had the best flower diameter in general, foliar application of nano titanium dioxide and titanium dioxide have been effective in improving the effects of salinity stress. In addition, the use of titanium dioxide in the highest level (40 ppm) and use of nano titanium dioxide in less concentration in Petunia plant had better effect on morphological traits. An important effect of titanium compounds on plants used for various crops is yield improvement. The positive effects of TiO2 could be probably due to the antimicrobial properties of engineered nanoparticles, which can enhance strength andresistance of plants to stress.
Rasul AbaszadehFaruji; Mahmood Shoor; Ali Tehranifar; Bahram Abedy; Nasim Safari
Abstract
Introduction: Ornamental plants play a vital role in meeting the mental and spiritual needs of peoplethat considered significance from commercial point of view as well. Optimal production of agricultural products requires suitable soil and adequate and absorbable nutrients for plant. Organic materials ...
Read More
Introduction: Ornamental plants play a vital role in meeting the mental and spiritual needs of peoplethat considered significance from commercial point of view as well. Optimal production of agricultural products requires suitable soil and adequate and absorbable nutrients for plant. Organic materials are important because ofimproving soil physical properties and soil fertility. Soil fertility depends on the content oforganic matter as well as the quality, quantity and dynamics of these materials insoil. Organic acids are an important source of organic matter. One of the most abundant forms of organic matter in nature is humic compounds which can be found in all soil and water environment. They play an important role in cation exchange, nutrients release, phosphorus buffering capacity and metal and toxic organic molecules maintenance.
Materials and Methods: In order to evaluate the effect of humic substances on morphological characteristics of geranium, thisexperiment was conducted in research greenhouse of Ferdowsi University of Mashhad during the years 2014 and 2015. The experiment was carried out as factorial based on completely randomized design with two factors and three replications. The first factor hadfour levels of humic acid (0, 0.2, 0.5 and 1 g/l), and the second hadfour levels of fulvic acid (0, 0.2, 0.5 and 1 g/ml). Treatment was usedalong with irrigation. Morphological characteristics included the number of leaves, number of nodes, number of branches, plant height, root length, leaf area, fresh weight of shoot, fresh weight of leaf, fresh weight of root, dry weight of shoot, dry weight of leaf, dry weight of root, volume of shoots, volume of root, fresh weight of shoot were measured at the end of the experiment. Statistical analysis of the results was performed by using Jmp-8 software. Charts were drawn using Excel 2010 and difference among treatments means were compared with LSD test.
Results and Discussion: The results of means comparison showed that combined use of humic acid and fulvic acid hadpositive effects on growth traits such as height, internode length, root length, fresh weight of shoot, fresh weight of root, fresh weight of leaf, dry weight of shoot, dry weight of leaf, volume of shoot, volume of root and leaf area. Research had shown that the application of humic fertilizers increased nitrogen content in shoots of the plant. It wasreported that nitrogen compounds existed in humic acid are important factors affecting the growth of plants. Humic acid also increasedshoot growth by increasing the uptake of nitrogen, calcium, phosphorus, potassium, manganese, zinc, iron and copper as well as hormone-like properties. It wasalso found that humic acid enhancedplant growth by increasing the activity of the RuBisCO enzyme and the subsequent increase in photosynthetic activity. Furthermore, humic acid reduced the pH of alkaline soils and causedthe nitrogen to be absorbed to a greater extent. The use of humic substances increased the leaf area and thus photosynthesis, therefore leading to the production of more dry matter in plants. Humic fertilizers also had a significant effect on root growth. Researchers had suggested that the presence of oxygen groups in humic acid increased lateral root growth. Although humic acid increased the growth of both root and shoot, its effectiveness on the root system wasmore evident.
Conclusions: This experiment was conducted with the aims of evaluating the effect of humic organic fertilizers, reducing the harmful effects of chemical fertilizers and improving the quality of plant growth in geranium. According to the results obtained from the present research, it can be concluded that combined application of humic acid and fulvic acid had greater effects on the majority of traits compared to the sole application of aforementioned compounds.
Mahin Nikoo; Mahmood Shoor; Ali Tehranifar; Elham Saeedi Pooya
Abstract
Introduction: One of the climate change sign is variation in greenhouse gases in the Earth's atmosphere. Carbon dioxide is the most important greenhouse gas that is released into the atmosphere by humans. It is expected that addition of carbon dioxide could effect the energy balance and global climate. ...
Read More
Introduction: One of the climate change sign is variation in greenhouse gases in the Earth's atmosphere. Carbon dioxide is the most important greenhouse gas that is released into the atmosphere by humans. It is expected that addition of carbon dioxide could effect the energy balance and global climate. Climate change is effective on agricultural productions. It is clear that different plants have different responses to Co2 variation. These responses are consisting of yield, growth characteristic and variation in root/shoot ratio of plants. On the other hand, using growing media are expanding for plants because of their advantages such as plants nutrient control, reducing the incidence of diseases and pests and increasing the quantity and quality rather than soil cultivation. Properties of various materials as substrates influence directly or indirectly on plant growth and crop production., Hydroponic method can be considered as one of the important methods to optimize water use in agriculture, especially in many countries are located in arid and semi-arid regions that have water crisis. Lisianthus is one of the most beautiful flowers with folded petals in white, blue and purple. I-ts scientific name is Eustoma grandiflorum from the family of Gentianaceae and native to North America. It has variety of annual, biennial or short-lived perennial. The aim of this study was to explore the effect of Co2 enrichment on growth response of aboveground and belowground of Eustoma grandiflorum under increasing of Co2 greenhouse gases in hydroponic culture.
Materials and Methods: The experiment was done as a split-plot based on completely randomized experimental design with three replications at greenhouse of Ferdowsi University of Mashhad. The treatments were consists of three concentrations of carbon dioxide (380 as controls, 750 and 1050 ppm) as main plots and two cultivars Yodel white and GCREC-blue as subplots. Some characteristic such as plant height, internode length, root volume, root area, root and shoot dry weight were measured. Data were analyzed by JMP software Version 8 using analysis of variance (ANOVA) and significant differences between means were determined by using LSD test at P < 0.05.
Results and Discussion: The results of analysis of variance indicated that the effect of Co2 treatment was significant (p
Hadi Khavari; Morteza Goldani; Mohmmad Khajehossaini; Mahmood Shoor
Abstract
Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant ...
Read More
Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb) to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb), optimum (To) and maximum temperatures (Tc) for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature, germination rate increases linearly up to an optimum temperature.
There are many cultivars of turfgrasses available each year and this large number can make your choice difficult. This guide is designed to help you decide which cultivars to use from those that have performed well in tests in Mashhad and are commercially available. When choosing a turf grass, consider the environmental aspects of where you plan to establish the turf and the cultural techniques that you will use to manage the grass and then choose the appropriate grass for your situation.
Materials and Methods: In order to determine cardinal temperatures in five cultivars of turfgrass (Festuca arundinacea asterix, Festuca arundinacea eldorado, Festuca arundinacea starlet, Lolium perenne and Bermuda grass) in eight temperature levels (5, 10, 15, 20, 25, 30, 35, 400C), factorial experiment was conducted in completely randomized design with four replications in research laboratory of Faculty of Agriculture, Ferdowsi University of Mashhad.
In the end of experiment measuring the following indices:
Final Germination Percentage (FGP) and Germination Rate (GR) were calculated based on below equation:
FGP= (n / N) × 100
In this equation, n is the number seed germination at the end of the trial and N is the total of seeds.
GR=
gi: the number of seed germination in every count and di:the number of days to counting until n-th day.
The base (Tb), optimum (To) and maximum temperatures (Tc) for seed germination were calculated based on below equation.
وx≤T0 y= ax2 + bx+ c
Data was analysis with MSTAT-C, Minitab ver, 13 and Excel software and means were comparative with Dunkan multiple range test in 5 percent probability.
Results and Discussion: Results showed that the germination percent, germination rate, radical length, plumule length, root to shoot and seedling vigor index are affected by temperature, variety and them interaction (P
Amirhassan Hosseini; Ali Tehranifar; Leila Samiei; Mahmood Shoor; Farshid Memariani
Abstract
Introduction: Allium is one of the greatest genera in Amarylidaceae family with more than 900 species distributed in northern hemisphere from temperate region to tropical and subtropical areas. There are more than 135 Allium species in Iran, many of which have the ornamental potential and can be exploited ...
Read More
Introduction: Allium is one of the greatest genera in Amarylidaceae family with more than 900 species distributed in northern hemisphere from temperate region to tropical and subtropical areas. There are more than 135 Allium species in Iran, many of which have the ornamental potential and can be exploited in floriculture industry. Northeast of Iran with more than 35 species especially in Razavi and North Khorassan provinces is regarded as one of the main centers of diversity of Alliums. The species of Allium have the great potential to be used either as cut flower and potted plant or as outdoor plant in urban landscape. There are indeed a rich germplasm of Allium in Iran with diverse characteristics of flower colour, size and form. For the utilization of the wild species, it is necessary to identify and fully assess their main morphological and phenotypic characteristics as the initial step. Morphological markers are one of the commonly used tools which are applied in phenotypic evaluation, taxonomic classification and collection management of plant species. The aim of present study was to evaluate morphological traits and genetic diversity of some of the native Allium species of Razavi khorassan in Iran.
Materials and Methods: In this study the Allium species were collected from diverse regions of Khorassan, Iran and were cultured as a collection in Research Center for Plant Sciences (RCPS) of Ferdowsi University of Mashhad in a completely randomized block design. Following the establishment of the Allium species, 29 qualitative and 13 quantitative traits were recorded during the growing season in two successive years. Analysis of variance and comparison of all traits were performed using JMP8 software and simple correlation and factor analysis was calculated using SPSS software. Principal component analysis as well as maximum variance was also performed on the collected data.
Results and Discussion: The results exhibited that the species and genotypes were significantly different in their morphological characteristics. Some of the traits like scape length, leaf colour, flower diameter and length and width of perianth were more diverse among the species and consequently were considered as the most discriminating traits whereas some qualitative traits like perianth segment form, ovary form and perianth tip form remain uniform amongst the species. There are number of studies indicating the existence of high genetic diversity in phenotypic characteristics of some species of Allium like garlic, onion and shallot .The traits having the higher coefficient of variance bring the opportunity for the wider range of selection. Correlation analysis revealed the significant correlations among some of the studied traits. High positive correlation observed among leaf length with scape length, scape diameter with perianth length, leaf width with scape diameter and scape diameter with flower diameter. In garlic, similar positive correlation was reported on leaf length and width with scape length. Considering the quantitative traits, various parameters like environmental conditions are also effective in correlation between traits along with the corresponding genetic controlling. Factor analysis is used to identify the most important factors involving in discriminating among the species and genotypes. Based on the results, the 42 morphological characters were classified into five main factors which could justify 91.62% of total variance. Characters like inflorescence diameter, scape diameter, flower form, pedicel length, filament length and ovary and style length were placed in the first factor and expressed 30.03% of the variation. The second factor that could explain 24.9% of variation was included scape form and length, leaf length and pedicel colour. The selected discriminating traits of this study were similar to the ones of Allium roseum which had been earlier introduced by Zammuri et al (2009). The first two factors explained the highest amount of diversity while the 3rd to fifth factors could define 16.10%, 12.265% and 9.19% of variance, respectively. Traits like scape length, leaf form and colour and inflorescence diameter are amongst the main factors for the selection of ornamental plants.
Conclusion: In overall, substantial valuable information obtained for some of the native species of Alliums of Iran for the first time. This information can help in selection of desired species for specific landscape designing however characterization of the native germplasm can also be a very beneficial task in future breeding program as well as the conservation strategies for preserving the endangered species.
Seyedeh Zeinab Attari; Mahmood Shoor; Mahmoud Ghorbanzadeh Neghab; Ali Tehranifar; Saeid Malekzadeh Shafaroudi
Abstract
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods ...
Read More
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods for conservation of the plants. Genetic variation studies are fundamental for the management and conservation of this species. The use of molecular markers is a powerful tool in the genetic study of populations. The use of DNA marker, such as AFLP, SSR, RAPD and ISSR represents an alternative method in detection of polymorphism. ISSRs are highly variable, require less investment in time, money and labor than other methods. ISSR can generate higher percentages of polymorphic loci than other PCR methods. These can serve as an efficient tool for phylogenetic studies. ISSRs had reported that used in studies of cultivated species to produce genetic linkage maps and to determine the relatedness of lines of agriculturally important species. ISSR analysis involves the PCR amplification of regions between adjacent, inversely oriented microsatellites, using a single simple sequence repeat (SSR) motifs (dinucleotide, trinucleotide, tetranucleotide or penta nucleotides). Therefore, little is known about the genetic variability of the Iranian Iris ssp .The objectives of this study were to evaluate genetic diversity among genotypes using ISSR markers and the degree of polymorphism generated from ISSR technique as a pre-requisite for their applicability to population genetics studies in Iris ssp.
Materials and Methods: To evaluate genetic variations in some wild Iris genotypes, Iris kopetdaghensis ،Iris songarica and Iris fosteriana were collected from some parts of Khorasan province. Genomic DNA was extracted from young leaves following the cetyltrimethylammonium bromide (CTAB) procedure. Extracted DNA concentration was quantified by using the spectrophotometer and qualified using agarose gel electrophoresis. A total of 16 primers were initially screened against two plants selected from different regions and finally six primers for final analysis was selected based on consistent (CA)8G ،(CT)8RG ،(TC)8C ،(TG)8G ، (AC)8YG and (AG)8YT, strong amplification products, production of polymorph, reproducible fragments between replicate Polymerase Chain Reaction (PCR). The ISSR amplification reactions contained 30-50 ηg of genomic DNA, 2.5 μL 1 × buffer, 2 mM MgCl2, 200 μM of each dNTP (Fermentas), 10 μM primers and 0.2 U Taq DNA polymerase (Fermentas), with the final volume adjusted to 25μL with H2O bidest. ISSR reaction products were separated on 1.5% horizontal agarose gels, in TBE buffer and visualized under ultraviolet light after staining in 0.5μg/mL ethidium bromide. Digital photo was taken with gel documentation system. The 100 bp DNA ladder plus molecular weight marker was used to compare the molecular weight of amplified products. Amplified products were scored for the presence (1) or absence (0) of bands and binary matrices were assembled for the ISSR markers. The binary matrices were subjected to statistical analyses using NTSYS-pc software version 2.02.
Results and Discussion: Six ISSR primers produced 126 bands across the 16 genotypes, of which 119 were polymorphic. The number of amplified fragments varied from 16 [primer (CA)8G)] to 24 [primer (TC)8C and (AC)8YG)] across the genotypes. The average polymorphic bands per primer were 19.4. The percentage of polymorphism for primers ranged from 76 to 100, with an average of 94.4.The amplified bands genotypes related to a species the same banding pattern was observed but there was lower similarity between the species. Our data indicated that ISSR technology can detect considerable polymorphisms (76.4 %) in our genotypes, suggesting that it will be useful in characterization and fingerprinting of Iris germplasm. The results of this study also provide fundamental evidence demonstrate that ISSR marker is a simple, informative, reproducible and suitable approach to evaluation of molecular diversity and phylogenetic relationships in Iris spp. The highest genetic similarity was between species Iris kopetdaghensis and Iris fosteriana. This study revealed a significant variation especially between Iris kopetdaghensis and Iris songarica.
Conclusions: The results of cluster analysis showed that molecular markers able to identify the species and genotypes within a species from each other. Results of this study showed that the use of molecular markers in breeding programs, especially fingerprinting is useful for lily. ISSR molecular markers have proved to be an efficient tool for studying genetic diversity and management of lily germplasm. . Also the result showed these genotypes have high genetic diversity, and the success in Iris breeding programs use to recommend Iranian local Iris.
Azadeh Mousavi Bazaz; Ali Tehranifar; Mohammad Kafi; Ali Gazanchian; Mahmood Shoor
Abstract
Introduction: Worldwide, more than one-third of irrigated land is salinized, and in many regions, fresh water shortage has resulted in restrictions on the use of potable water for landscape irrigation. On the other hand, rapidly expanding population growth is occurring in many arid regions, where soil ...
Read More
Introduction: Worldwide, more than one-third of irrigated land is salinized, and in many regions, fresh water shortage has resulted in restrictions on the use of potable water for landscape irrigation. On the other hand, rapidly expanding population growth is occurring in many arid regions, where soil and water salinity are problems and there are increased demands on limited fresh water resources (9). In the turf grass industry, with the increased use of saline and non-potable water, the development of turf grass landscapes in arid and seashore regions where saline soil is common, and with the use of salt for deicing roadways, the need for salinity tolerant turf grasses is very important (16).Seed germination and early seedling growth is usually the most critical stage in plant establishment, and determining successful crop production (23). Tall fescue (Festuca arundinacea Schrub.) is an important perennial cool-season grass in temperate regions and it is widely used for both forage and turf purposes (25). There is no study on the evaluation of salinity on tall fescue native populations in Iran. The major objective of this study is to determine the relative salt tolerance and growth response of native populations of tall fescue to salinity in germination stage.
Materials and Methods: In this experiment, seeds of some native populations of tall fescue (TF) (F. arundinacea Schreb) including: Semirom, Mashhad, Sanandaj, Sanajan, Yasuj, Yazd Abad, Daran, Kamyaran, Gandoman, Borujen, Nasir Abad, Alborz and commercial TF (C. TF) seeds were used. Four replicates of 25 seeds were germinated on filter papers with 5 ml of NaCl concentrations placed in 9 cm Petri dishes. NaCl concentrations included: 0, 45, 90 and 135 milimolar. The Petri dishes were transferred to germinator at 23°C.Germinated seeds were counted on the3rd, 5th, 8th, 11th and 14th days. Germination was considered to have occurred when the root length was 2 mm long. The seedling with short, thick, and spiral formed hypocotyls and stunted primary root were considered as abnormally germinated. Then, the total germination percentage, germination rate, root length and shoot length were calculated on Day 15. The vigor index was calculated as VI= (RL+SL)×GP, where for the VI, RL is the root length, SL is the shoot length and GP is the germination percentage. Root length and shoot length were measured manually with a ruler. The experimental design was a completely randomized design with 4 replications and 25 seed per replicate. The data were statistically analyzed by JMP 8.0. The difference between the means was compared using LSD values (P < 0.01).
Results and Discussion: The results indicated that the increase of salinity level leads to a significant decrease in germination percentage, germination rate, length of shoot, root and vigor index in all genotypes. Also, interaction of salinity and genotype was significant for germination percentage, germination rate, and vigor index. The highest germination percentage was related to Mashhad population at 45 milimolar, and Daran population at 90 and 135 milimolar. Also, the lowest germination percentage was related to Kamyaran population at 45 and 90 milimolar and Commercial tall fescue at 135 milimolar. Mashhad population at 135 milimolar, Daran population at 90 and 135 milimolar had the highest germination rates. The lowest germination rate was recorded at 45, 90 and 135 milimolar in Commercial tall fescue, Kamyaran and Sanandaj populations, respectively. The highest root length was seen in Commercial tall fescue at 90 and 135 milimolar, and Mashhad population at 45 milimolar. For shoot length factor, Mashhad population, Commercial tall fescue and Mashhad population had the highest lengths at 135, 90 and 45 milimolar, respectively. The highest vigor index was related to Mashhad, Daran and Mashhad populations, at 45, 90 and 135 milimolar, respectively. NaCl has an inhibitory effect on seedgermination and its effect on germination showed time course dependence for absorption of Na and Cl by thehypocotyls (28).Increasing salinity levels caused delays in seedlingemergence as a result of reducing cell division and plant growth metabolism (28). The negative effect of salinity on seed germination and early growth could be due to the toxic effects of NaCl on seeds, or to the osmotic effect, that prevents the seeds from imbibitions (21).
Conclusion: Major grasses mentioned above could tolerate 45 milimolar salinity without noticeable changes in germination traits. Mashhad and Brujen populations were least affected by 135 Mm Nacl at germination rate and percentage. Also, Daran and Mashhad populations were least affected by different salinity levels in all germination factors compared to other populations and could be suggested as salt-tolerant genotypes at germination stage.
Meysam Mansouri; Mahmood Shoor; Ali Tehranifar; Yahya Selahvarzi
Abstract
Gerbera is one of the ten important cut flowers in terms of production and consumption in the world and Iran. In this research effects of foliar application of salicylic acid and thiamine on biochemical characteristics of gerbera flower were investigated. This experiment was conducted in a completely ...
Read More
Gerbera is one of the ten important cut flowers in terms of production and consumption in the world and Iran. In this research effects of foliar application of salicylic acid and thiamine on biochemical characteristics of gerbera flower were investigated. This experiment was conducted in a completely randomized design with four replications in the greenhouse commercial of the Golazin Maghsoud Company. Treatments were included of municipal water (control), salicylic acid 75 and 150 µM and thiamine 250 and 500 µM. Foliar application was performed with interval of two weeks in two stages. The results showed that the treatments had a significant effect on biochemical characteristics of gerbera. The greatest amount of chlorophyll a (36.6 µg/g Fw), b (17.27µg/g Fw) and total chlorophyll content (61.17 µg/g Fw) were related to Thiamine 250 µM and the highest level of carotenoids content 7.87 (µg/g Fw) was related to Thiamine 500 µM. The most reducing sugars content (181.51 mg/g Fw) reported in 75 µM salicylic acid. The highest activity of catalase and peroxidase enzyme (94.5 and 70.7 unit enzyme per minute in gram fresh weight, respectively) were related to 75 and 150 µM salicylic acid. Thus, salicylic acid and thiamine increased photosynthetic pigments, antioxidant enzyme activities.
Gholamreza Chenarani; Mahmood Shoor; Ali Tehranifar; Seyyed Hossein Nemati; Gholamhossein Davarynejad
Abstract
CO2 enrichment in greenhouse is a suitable way which reduces production time, better growth vigor and also higher plant quality. The main aim of this study was to find out the effects of artificial CO2 enrichment under different light levels on rooting of the ornamental foliage Codiaeum variegatum. The ...
Read More
CO2 enrichment in greenhouse is a suitable way which reduces production time, better growth vigor and also higher plant quality. The main aim of this study was to find out the effects of artificial CO2 enrichment under different light levels on rooting of the ornamental foliage Codiaeum variegatum. The experiment was planned as a split plot based on a completely randomized design. CO2 was considered as the main plots (380 as control, 750 and 1050 ppm) and these light intensities as the sub plots (10000 as control, 12000 and 14000 Lux) were used. Results showed a significant increase on measured traits with elevating levels of CO2 and light. Highest measured values of different traits were observed at 12000 Lux light intensity and 750 ppm CO2 enrichment. Light intensity × CO2 interaction had a significant effect on leaf length, leaf number, root quality, root volume, root length (P≤0.01) and rooting percentage at (P≤0.05). Spad chlorophyll unit was not noticeably significant. Rooting and plant growth generally raised along with both light intensity and CO2 elevation.
Mahmood Shoor; Zahra Karimian; Morteza Goldani
Abstract
In one side the negative effects of increasing of concentration of carbon dioxide in the world, and in the other side, the positive effects of greenhouse enrichment by such gas is one of the most important reasons in researching of this gas on different plants. For assessment of the effects of carbon ...
Read More
In one side the negative effects of increasing of concentration of carbon dioxide in the world, and in the other side, the positive effects of greenhouse enrichment by such gas is one of the most important reasons in researching of this gas on different plants. For assessment of the effects of carbon dioxide and light regimes in different genotypes of Pansy (viola tricolor) a factorial experiment based on completely randomized design with 3 replications and 18 treatments was conducted at the greenhouses of Ferdowsi University of Mashhad at 2009. The treatments are including; 2 concentrations of carbon dioxide (380 and 1000 µmol/mol), 3 light regimes (11000 and 14000 lux and sun light) and 3 cultivars (Yellow-Black, Bourdeaux, Sawyers-Black) of Pansy. The results of this experiment showed that among the 11 measured traits in the most treatments, the traits of length, width and the number of stomata and dry weight of shoot were significant. The concentration of 1000 µmol/mol carbon dioxide had less decreasing of stomata conductivity and dry weight than carbon dioxide 380 µmol/mol. Totally the effect of light regimes on the measured traits didn’t has any significantly difference with sun light. Among the cultivars, altogether Sawyers was more proper because of less stomata conductivity and probably decreasing of water consumption.
Hossein Araghi; Ali Tehranifar; Bahram Abedi; Gholamhossein Davarynejad; Mahmood Shoor
Abstract
No Sufficient of chilling is a major problem in producing temperate fruit in warm climates. So determination of chilling requirement of different cultivars of grape is important. The aim of this research was determination of chilling requirement of four grape vine commercial cultivars including: Kolahdary, ...
Read More
No Sufficient of chilling is a major problem in producing temperate fruit in warm climates. So determination of chilling requirement of different cultivars of grape is important. The aim of this research was determination of chilling requirement of four grape vine commercial cultivars including: Kolahdary, Red Rasin, Yaghoti and White Rasin that factorial experiment based on a completely randomized design with 12 chilling temperatures included: control, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 hours below 5±10C and three replications with 6 individual samples in each replicate. Results showed that the effects of chilling requirement and cultivars on the studied traits including sprouting percentage, number of days to first sprouting shoot, number of days to last sprouting shoot and ratio of fresh weight to dry weight were significantly different. With increasing chilling duration from 200-1000 hour in Yaghoti cultivar and from 300-1000 hour in other three cultivars, there was no significant difference in the percentage of sprouting. Nevertheless at least 100 hr, of chilling is needed to get the favorable sprouting in Yaghoti cultivar and 200 hr, in other three cultivars. Results showed that with increasing chilling duration 0-1000 hr, the number of days for complete sprouting in kolahdary, Red Rasin, Yaghoti, and White Rasin cultivars decreased by 19, 19, 22 and 15 day, respectively. Moreover, the highest ratio of fresh weight to dry weight of vegetative parts of cutting above mentioned cultivars was observed in 200-1000 hr, rang of chilling.