Pomology
Sayeede Khodaei; Ebrahim Ganji Moghadam; Mahboobeh Zamanipour
Abstract
IntroductionSince Iran is one of the arid and semi-arid regions of the world and due to the great importance of water in agriculture, it is very important to conduct research to improve drought stress in order to produce more quality products. In this regard, this study was conducted to investigate the ...
Read More
IntroductionSince Iran is one of the arid and semi-arid regions of the world and due to the great importance of water in agriculture, it is very important to conduct research to improve drought stress in order to produce more quality products. In this regard, this study was conducted to investigate the effect of mycorrhiza species on some morphological and physiological characteristics of peach seedlings under drought stress. Arbuscular mycorrhizal fungi coexist with the roots of various plants and have a broad effect on their growth. These fungus are effective in the initial establishment of the plant under drought conditions. Arbuscular mycorrhizal fungi increases plant resistance to dehydration by increasing growth and uptake of nutrients, especially phosphorus. Matherials and MethodsIn order to investigate the effect of three species of Arbuscular mycorrhizal fungi on some vegetative characteristics and phosphorus absorption of peach seedlings under drought stress conditions, a factorial experiment was conducted based on a randomized complete block design with four replications. The experimental factors included: drought stress at four levels (100, 80, 60 and 40 percent of field capacity) and the second factor application of mycorrhizal fungus at four levels: application of three species of mycorrhiza fungi and three species of fungi, each in three concentration (75, 100, 125 g in a pot) with chemical fertilizer (100 g triple super phosphate for each pot) and fertilizer (without mycorrhiza) and control (without fertilizer and mycorrhiza). The measurements were comprised root traits, stem diameter, vegetative growth of branches, leaf area index, vegetation index, relative leaf water content, chlorophyll fluorescence, leaf electrolyte leakage, leaf phosphorus and colonization root percent. Results and DiscussionResult showed that application of mycorrhizal fungi seems to be effective in reducing the effects of dehydration stress. The use of these fungi had a positive effect on reducing leaf electrolyte leakage under severe dehydration. According to the results obtained in this experiment, the highest efficiency in drought stress conditions was observed in G. mosseae and G. intraradices. Under drought stress conditions, the lowest values of root volume, greenness index, chlorophyll fluorescence, leaf electrolyte leakage, root colonization and leaf phosphorus content were observed. With increasing of drought stress, all of the mentioned traits reduced and mycorrhiza fungi had a positive significant effect on all studied traits. In this study, it was found that with increasing stress intensity, the traits were negatively affected and led to irreparable damage to the product. Therefore, it is expected that by preventing or minimizing the effects of stress, an effective step was taken to increase performance. The significant decrease in root colonization with increasing stress is probably due to the decrease in the growth of hyphae. The most important step after spore germination is the growth of hyphae resulting from germination, which plays an essential role in root colonization. Apparently, hyphae growth is more affected by osmotic potential than spore growth. The results obtained from this research showed that the roots of peach seedlings have significant symbiosis potential with arbuscular mycorrhizal fungi (Peymaneh & Zarei, 2013). According to Miyashita et al. (2005) Leaf photosynthesis activity can be used as a useful tool for classification of drought tolerant plants. Sajjadinia et al. (2010) regarding the relative water content and photosynthesis of several pistachio cultivars reported high correlation and high diversity in different stages and cultivars and stated that the decrease in relative water content strongly reduces transpiration, stomatal conductance and photosynthesis, which our results are consistent. With the escalation of tension, the greenness index also decreased; So that in the conditions of severe stress (40% of crop capacity), the amount of greenness index reached the lowest value. In the conditions of severe stress due to interruption of continuous irrigation, the plants entered from the stage of mild stress to the stage of severe dry stress, which seems that under these conditions, the decrease in the concentration of chlorophyll, in addition to the decrease in the amount of synthesis, is caused by the decomposition of chlorophyll due to the increase in the amount chlorophyllase, peroxidase and phenolic compounds. According to Schutz and Fangmier (2001), the decrease in the amount of chlorophyll in stress conditions is related to the increase in the production of oxygen radicals in the cell. These free radicals cause peroxidation and as a result the decomposition of this pigment. The greenness index is considered one of the most important growth parameters, which is reduced by drought stress conditions, and the results indicate that the treatment of mycorrhizal fungi in all three types of inoculated mushrooms has improved the greenness index and the adverse effects It has removed the drought stress to a great extent (Figure 6), which can be attributed to the improvement of water and food absorption by mycorrhizal roots (Larsson et al., 2008). Conclusion In general, this study showed that the best treatment related to the mycorrizha fungi was mosseae, which had the most effect on reducing the negative effects of stress
Pomology
Ebrahim Ganji Moghadam; Ahmad Mostafapoor; Mahboobeh Zamanipour
Abstract
Introduction
Iran is undoubtedly one of the most important and potential areas of fruit production in the world due to having diverse climatic zones and also the existence of different cultivars and rich germplasm for many horticultural products. Meanwhile, cherries are very important because of their ...
Read More
Introduction
Iran is undoubtedly one of the most important and potential areas of fruit production in the world due to having diverse climatic zones and also the existence of different cultivars and rich germplasm for many horticultural products. Meanwhile, cherries are very important because of their good taste, high nutritional value and short ripening period. Despite the relatively high production, Iran ranks 46th among cherry exporting countries, which can be attributed to the non-uniformity of cultivars in orchards and mixed cultivation of several cultivars, lack of attention to the incompatibility of cherries and the lack of suitable pollinizer, the drought, the lack of availability of cultivars and rootstocks suitable for climate and soil changes, pest damage, etc. At present, in Khorasan-Razavi province, Takdane cherry trees have not yield well, which experts have sometimes attributed to self-incompatibility or lack of proper pollinizer. The gardener spends a lot of money to build a orchard that is not profitable; Therefore, instead of cutting down the trees, it is suggested to do grafting and in one turn, to replace the cultivars of your orchards with cultivars suitable for the region, which have good yield, quantitative and qualitative characteristics, and are self-fertile. Top-working is a new approach to increasing the productivity of old orchards, rejuvenating and changing their varieties. With this aim, a research was conducted in Razavi Khorasan province over three years.
Matherial and Methods
This project was carried out in three regions of Chenaran, Neishabur and Torghabeh Shandiz and included three independent experiments. After the growth of scion, the degree of adaptation and percentage of grafting success, vegetative growth of scion, beginning of fruiting, yield, and economic evaluation were investigated. In the first experiment, in order to determine the type of grafting and the cultivar on the success and percentage of grafting, a factorial experiment was used in the form of a randomized complete block design in three replications and each replication included 3 transplants. The first factor was grafting type in two levels (bark grafting and cleft grafing) and the second factor was cultivar in three levels (Stella, Sweetheart and Sunburst). In the second experiment, the evaluation of the effect of tree age and type of grafting on success percentage of grafting was carried out. In order to carry out this stage of the factorial experiment, two factors were used. The first factor was tree age at two levels (10 and 20 years) and the second factor was the type of graft (bark grafting and cleft grafing) used. In the third experiment, the effect of nurse branch and cultivar on the percentage of grafting success was investigated. This stage was a two factorial experiment where the first factor was the presence or absence of the nurse branch and the second factor was the cultivar in three levels (Stella, Sunburst, Sweetheart), used.
Result and Discussion
The results of first experiment showed that the Sunburst cultivar with the highest percentage (86.8%) and the Stella cultivar had the lowest percentage (64.3%) of grafting success. This result is consistent with the reports of Soleimani et al. (2008) who found that the success percentage of different cultivars were significantly different from each other. Also, cleft grafting had a higher percentage than bark grafting. Therefore, cleft grafting was more successful at 65% than bark grafting at 13%. These results are consistent with the findings of Mahmouzadeh (2012), who reported that the cleft graft had a higher percentage of success other than bark grafting.
The results of second experiment showed that as the age of the tree increased, the percentage of grafting decreased greatly. The grafting percentage was about 68% in young trees and 8% in trees over 25 years old. Based on this, it is not recommended to perform branch grafting in old trees. The results of third experiment showed that the maintenance of the nurse branch in the cherry tree does not have a significant effect on grafting. The grafting percentage was about 78% in trees without nurse branches and about 63% in trees with nurse branches. Based on this, it is not recommended to keep the nurse branch in the cherry branch.
Analysis of variance of the simple and mutual effects of year and branching location on grafting percentage of cherry trees was significant at 1% level and it was found that the percentage of grafting was higher in the second year than the first year due to the skills of transplanters. Also, the percentage of graftng success in Torghabeh and Shandiz, was higher than Chenaran and Neishabur. These results are in agreement with the findings of Mng'omba et al. (2010) who reported that grafting success largely depends on the skill of the transplanters, is consistent.
Conclusion
In general, Top-working in sweet cherry trees is recommended in order to change the variety of the orchard and also, improve the productivity of the orchard.
Breeding and Biotechnology of Plant and Flower
Mohammad Esmaeil Naddaf; Ebrahim Ganji Moghadam; Gholmreza Rabiei; Abdolrahman Mohammadkhani
Abstract
Introduction Sweet Cherry (Prunus avium) belongs to the Rosaceae family, which due to vegetative propagation problems, in vitro propagation is recommended to increase mass and disease-free production. Micropropagation has many advantages over other vegetative methods. Although the most suitable ...
Read More
Introduction Sweet Cherry (Prunus avium) belongs to the Rosaceae family, which due to vegetative propagation problems, in vitro propagation is recommended to increase mass and disease-free production. Micropropagation has many advantages over other vegetative methods. Although the most suitable organ that preserves the genetic characteristics of the cultivar is bud meristem, plant regeneration from meristem culture is difficult in many species of woody plants, so micro-grafting is a suitable technique to overcome these problems. The aim of this study was to investigate the effect of scion size and origin of commercial sweet cherry cultivars interact with micrografting on the vegetative rootstocks.Materials and Methods In this study, factorial experiment was used as a test unit in a completely randomized design (CRD) with two factors in five replications and ten seedlings per replication. The first factor was cultivar in seven levels (B: Bing, D: Dovomres, H: Haj Yousefi, P: Pishres, S: Siah- Mashhad, T: Takdaneh, Z: Zard) and the second factor was scion type in four levels (M1R1: 2 mm in vivo explant, M2R1: 5 mm in vivo explant , M1R2: 2 mm in vitro explant and M2R2: 5 mm in vitro explant). To prepare the scion, 1.5 to 2 cm long explants were isolated from shoot tips and then disinfected with 75% ethanol and 20% Sodium hypochlorite. After rinsing with distilled water, the shoot tips with 2 and 5 mm length were extracted for in vivo explants. In vitro explants were obtained from shoo tips that was previously established in MS culture medium with supplement of 1 mg.l-1 of BAP. The meristems were prepared in 2 and 5 mm and used as in vitro explant. 5 cm length in vitro shoots of sweet cherry ‘Gisella 6’ was used as rootstock. Micro-grafting was performed according to the standard method for sweet cherries. Micro-grafted plantlets were transferred to MS medium supplemented with 1 mg.l- l BAP, and kept under low light (100 lux) condition for one week, then transferred to growth chamber at 27.1 °C photoperiods 16/8 hrs light/darkness (1500 lux). In order to induce root, grafted plantlets were transferred to Perlite: MS medium supplement with 1 mg.l- l IBA. After rooting, plants were placed in polyethylene pots containing perlite: peatmoss (1:1) for acclimation. Micro-grafting success indices were recorded in each of the micro-grafted plantlets. The data were analyzed by SAS statistical software (9.1) and the means were compared by Duncan's multiple range test (1 and 5 % of probability levels).Results and Discussion The results showed that in all indices there was a significant difference between scion types and cultivar scion type interactions except grafting time, but there was no difference between cultivars (except longitudinal growth of scion). Among the scion types, the 5 mm in vitro scion (M2R2) had the highest micro-grafting success rate (42%), number of leaves (3.7), longitudinal growth (6.3 cm) and taken grafting time (two days). Finally, in successful micro-grafted plants, ‘Pishres’ cultivar had better results in rooting (32.8%) and ‘Zard’ cultivar in acclimation (3.4%) traits. Probably the presence of leaves led to better nutrient supply and surface contact, so it mostly improved the success of micrografting technique. In this study, micro-grafting success indices were lower than previous reports using seedling rootstocks. This might be due to difficult grafting operations, poor rootstock-scion communication, low physiological activity, and high in vitro oxidase activity. In the type of scion, micro-grafting success rate of 5 mm in vitro scions (include leaf primordia), was better than 2 mm scions (without leaf primordia). These results were consistent with most reports in sweet cherries and other stone fruit that were more successful in micro-grafting using larger in vitro explant.Conclusion Based on our results, it can be concluded that the micro-grafting method in sweet cherry micro-propagation is a fast practical method with high potential for production and regeneration of healthy orchards, which is also possible for other cultivars. In micro-grafting success, in vitro explants are preferable to explants taken directly from in vivo mother trees, and the use of larger explants for scion is recommended due to the presence of leaf primordia in micro-grafting success. However, smaller-size explants are more likely to produce healthy plants.
Pomology
Ameneh Ghahremani; Ebrahim Ganji Moghadam; Ali Marjani
Abstract
Introduction
Nectarine (Prunus persica L. Bath) belongs to Rosaceae family, Prunoidae subfamily, and Prunus genus. This fruit is generated by a vegetative mutation in one of the peach genes. Therefore, it is a kind of peach that has been developed due to the mutation of the fruit with special ...
Read More
Introduction
Nectarine (Prunus persica L. Bath) belongs to Rosaceae family, Prunoidae subfamily, and Prunus genus. This fruit is generated by a vegetative mutation in one of the peach genes. Therefore, it is a kind of peach that has been developed due to the mutation of the fruit with special aroma, color, and taste. Nectarine had about 10.1% of the total distribution of stone fruits in Iran. In Khorasan Razavi province, the production and yield of nectarine were 5412.7 tons and 6243 kg/ha in 2018, respectively. Due to the lack of sufficient research on different nectarine cultivars in Khorasan Razavi province and farmers' lack of access to new and high yielding cultivars, and the use of unknown low-quality cultivars with low marketability and yield, the present study aims to investigate morphological, pomological, and qualitative responses of 10 nectarine cultivars and genotypes in Khorasan Razavi province climatic conditions were performed to select promising cultivars and genotypes.
Materials and Methods
This study was conducted to select the best genotypes in terms of growth, morphological, and pomological traits from among ten nectarine genotypes and cultivars (‘Flamino’, ‘Nectared’, ‘Henri’, ‘Shaniaria’, ‘Royziana’, ‘Taj No.-1 and -2’, ‘Shalil No.-1’, ‘Andrros’, and ‘Sungold’ as a control) as a randomized complete block experiment with three replications during 2018-2019 in Agricultural and Natural Resources Research and Education Center of Khorasan Razavi. The traits measured in the present study are flowering start time, flowering period, harvest time, tree height, and diameter, yield, length, width, and weight of fruit and length, width, and weight of the stone, acidity, titratable acidity, soluble solids, fruit tissue firmness, and flavor index.
Results and Discussion
Results indicated that the cultivars and genotypes showed significant differences in terms of phenological traits (first bloom, full bloom, flowering time, flowering period, and harvest time), morphological (tree height, trunk diameter), pomological (yield, length, width, and weight of fruit and length, width, and weight of stone) and quality (acidity, titratable acidity, soluble solids, fruit tissue firmness, and flavor index). The earliest flowering genotypes were ‘Nectared’, ‘Flamino’, and ‘Sungold’, while ‘Henri’ and ‘Taj No.-1’ were the latest flowering. ‘Henri’, which had the most extended flowering period, showed a later harvest time. The panel test results showed that ‘Flamino’, ‘Henri’, and ‘Shaniaria’ had the highest rank in terms of color, texture, smell, and taste. While ‘Royziana’ had the lowest average. ‘Flamino’ had the highest chlorophyll index (36.91), which was not significantly different from the ‘Nectared’, ‘Henri’, ‘Shaniaria’, ‘Taj No. -1 and -2’. ‘Henri’ genotype with 44.6 kg yield, 3.55 kg/cm2 fruit tissue firmness, and 16.39% soluble solids showed statistical superiority in quality traits. ‘Flamino’ and ‘Shahlil-1’, with 138.76 and 129.51 g, respectively, had the highest fruit weight, increasing 32.97 and 28.19% compared to the control. In the second year, due to more growth and increasing the age of the tree naturally, increased tree height (22.41%), trunk diameter (79.8%), crown of the tree (73.3%), chlorophyll index (5.16%), fruit weight (35.06%), and fruit flavor index (28.46%) were observed compared to the first year. Tree yield was positively and significantly correlated with tree height and fruit tissue firmness and negatively and significantly correlated with fruit length, fruit width, and stone length. Tree height, crown of the tree, fruit width, stone weight, and fruit weight entered the regression model, finally explaining 55.91% of the tree yield changes.
Conclusion
In general, ‘Flamino’, ‘Nectared’, and ‘Henri’ are recommended for cultivation in Khorasan Razavi province's climatic conditions due to their high pomological and phonological traits as superior nectarine genotypes.
Ebrahim Ganji Moghadam; Ameneh Ghahremani; Seyyed Yaqub Seyed Masoumi Khayavi
Abstract
Introduction: Peach (Prunus persica L.) is one of the most essential fruit in Iran and the world. This fruit is suitable for both fresh markets and industrial producer and it is quite favorable by consumers. The efficiency of production is strongly influenced by the chosen peach cultivars. New cultivars ...
Read More
Introduction: Peach (Prunus persica L.) is one of the most essential fruit in Iran and the world. This fruit is suitable for both fresh markets and industrial producer and it is quite favorable by consumers. The efficiency of production is strongly influenced by the chosen peach cultivars. New cultivars are constantly in development by breeders. However, all characteristics are required to be examined include their ecological adaptation ability, productivity, fruit quality, and market value before orchard establishment. Studying the new cultivars is practically essential for exact determination of morphological and phenological features of genotype which is important. However, there is limited information on the global evaluation of fruit quality in breeding progenies and their relationships with pomological traits. Furthermore, the cultivated peach area under Khorasan Razavi province is 1850 ha and the production of fruit is 11283 tons. Therefore, the selection of suitable cultivars for cultivation in the region is very important due to the high economic lifespan of peaches (20-30 years), which in some commercial orchards this period is reduced to 12-15 years. Therefore, this study aims to evaluate the pomological and morphological traits of 14 peach genotypes and cultivars in Khorasan Razavi province climatic conditions to select cultivars or genotypes compatible with high quantitative and qualitative performance. Materials and Methods: This study was performed in two-years (2016-17 and 2017-18) experiments based on a complete randomized block design with three replications on 14 peach cultivars and genotypes in Golmakan Agricultural and Natural Resources Research Station on 4-years-old trees with density planting system at a spacing of 4 ×5 m. The type of applied irrigation was drip irrigation, with common fertilizer. Trees were trained to an open center system. The vegetative (tree height, trunk cross-section, the crown of the tree), phenological (first bloom, full bloom, end of flowering, flowering period, and harvest time) and reproductive (fruit weight, stone weight, fruit length, fruit width, fruit yield, total soluble solids, titratable acidity, flavor index, and pH) traits were evaluated. It is necessary to explain the soluble solids content by Refractometer (Model 7887, Osk Japan) in terms of percentage and acidity by titration with NaOH (0.1 N) based on predominant peach acid, malic acid. The ratio of soluble solids to acidity was obtained by dividing soluble solids by acidity. The pH of the fruit juice was measured with a portable pH meter at room temperature (23–18 °C). Data analysis was performed using SAS software (version 9.2) and means were compared using Duncan's multiple range test. Stepwise regression and cluster analysis (Ward method) was conducted by Minitab software (version 19). Simple correlation (Pearson) between traits from the mean of two-year data was performed using SAS statistical software (version 9.2), in which positive correlation with blue color and negative correlation with red color was determined, which increased the color intensity indicates an increase in the correlation coefficient. Results and Discussion: The results showed that year and genotype had significantly different effects on all studied traits. ‘Anjiri Maliki’ and ‘Shindabad Hastejoda’ were the earliest and the most late-flowering genotypes, respectively. Among the studied genotypes, ‘Shindabad-5’ and ‘Spring Time’ were the earliest fruiting genotypes, and ‘Meshkinshahr Paeeze’, ‘Kajil’, and ‘Anjiri Zafarani’ were the most late-fruiting genotypes. ‘Haj Kazem’ genotype had the highest tree height (236.18 cm), trunk cross-section (181.83 cm2), and tree crown volume (73.34 cm3), which compared to the control genotype (‘G.H. Hill’) showed 38.62%, 79.9%, and 55.7% increases, respectively. In the second year of the experiment, the characteristics of fruit weight, stone weight, fruit length, fruit width, and fruit yield increased by 41.72%, 43.45%, 16.61%, 16.40% and 81.99%, respectively, compared to the first year. The highest amount of single fruit weight (165.28 g) in ‘Fayette’ genotype, stone weight (7.04 g) and fruit length (65.05 mm) in ‘Shinabad Hastejoda’ genotype, fruit width (66.04 mm) in ‘Shandabad-5’, and fruit yield in ‘Fayette’ and ‘Paeeze Meshkinshahr’ genotypes (with an average of 21.78 and 21.33 kg, respectively) were obtained. ‘Anjiri Zafarani’ genotype had the highest content of soluble solids (16.95%), flavor index (48.38), and acidity (4.65), which compared to control genotype were increased 0.1%, 69.38% and 25.8%, respectively. Fruit yield had a positive and significant correlation with trunk cross-sectional traits, tree crown volume, fruit weight, stone weight, and fruit width. According to this study, the tree height, trunk cross-section, and fruit weight traits were entered into the regression model, respectively, and finally, the traits entered in the model justified 53.23% of the fruit yield changes. Conclusion: Generally, ‘Fayette’ and ‘Shindabad Hastejoda’ genotypes can be recommended as the best genotype for cultivation in the Khorasan Razavi region due to their high quantitative and qualitative yield.
Ebrahim Ganji Moghadam; Hamid Rahnemoun; Mahboobeh Zamanipour
Abstract
Introduction: Iran is the fourth largest apricot producer in the world. It is important to know the level of genetic diversity in breeding programs. Local genotypes are important because they are environmentally friendly and have beneficial genes in breeding programs. Therefore, this study was conducted ...
Read More
Introduction: Iran is the fourth largest apricot producer in the world. It is important to know the level of genetic diversity in breeding programs. Local genotypes are important because they are environmentally friendly and have beneficial genes in breeding programs. Therefore, this study was conducted with the main purpose to investigate the characteristics of phenology, morphology and pomology of six promising apricot genotypes in order to determine the best genotypes in Khorasan Razavi Province condition. Materials and Methods: This study was conducted to evaluate characteristics of six selected genotypes (‘190’, ‘269’, ‘414’, ‘464’, ‘390’ and ‘177’) compared to ‘Ordubad-90’ (as a control) with the aim of assessing their compatibility in Khorasan Razavi climatic conditions in a randomized complete block design with three replications, at Golmakan Research Station during the 2017-2019. These genotypes were selected randomly from the Azerbaijan apricot populations around 15 years ago and were undergoing preliminary studies in the main habitat and collecting and experimental orchards. During the research period, all genotypes were completely uniform in terms of environmental conditions and garden management. Quantitative analysis of variance was performed using SPSS software and comparison of means using Duncan's multiple range test at a probability level of 1%. Results and Discussion: Results showed that significant differences between genotypes in terms of flowering dates and fruit ripening. So that, Genotypes of ‘269’ were the earliest (19 March) and ‘190’ were the most late flowering (27 March) and, in the terms of fruit ripening time, genotype of ‘177’ were the earliest (third decade of May) and genotype of ‘190’ were the most late (second decade of July). Also, genotype of ‘414’ had the highest height (302.57 cm), crown width (278.03 cm), trunk cross section (42.75 cm2), annual vegetative growth (58.98 cm) and size index (8.76 m). These results are consistent with the findings of Nejatian and Arzani (2002) and Mesbahi et al. (2014) on a relatively significant diversity in the morphological characteristics of the studied genotypes. There was direct correlation between fruit size and stone size, so that, the highest fruit weight (65 g), stone weight (3.49 g) and kernel weight (1.93 g) was in genotype of ‘414’. This result is agreement with Asma and Ozturk (2005) who reported that there are direct correlation among fruit weight, stone weight and kernel weight in the studied apricot genotypes in Turkey. The highest acidity content (0.67%) belonged to genotype of ‘177’, the highest pH (4.97) was in genotype of ‘390’ and the highest yield (20.66 kg) was in genotype of ‘190’. The obtained results are consistent with the results of Rahnemoon et al. (2005) on the existence of a significant difference between the mean percentage of sugar and the content of total organic acids. Accordingly, with the increase of soluble solids during fruit ripening, the amount of total acid decreased, which is consistent with the results of Asma and Ozturk (2005). Also, there was a significant negative correlation between flowering time and yield at the level of 1% (-0.704). These results are consistent with the findings of Piir et al. (2017). The results of principal component analysis showed that PC1 factor with 47.06% of the total changes indicates fruit weight, stone weight and core weight, which can be called the factor of pomological traits. PC2 factor with 19.63% of the total changes indicates height, crown width and trunk cross section, which can be called the factor of morphological traits. PC3 factor with 15.14% of the total changes indicates the chemical properties of the fruit. The PC4 factor with 7.62% of the total changes indicates the time of beginning of flowering, the number of days from the full blooming stage to fruit ripening and yield, which can be called the factor of phenological traits. These four combinations accounted for about 89.45% of the total variation, and the other variations included a slight variation. These results are comparable to the results of Janatizadeh et al. (2011) regarding cultivars in Shahroud city. Conclusion: Genotype of ‘177’ is recommended because of its early ripening. Also, genotype of ‘144’ due to large fruit size, genotype of ‘190’ due to late ripening and high yield compared to ‘Ordubad-90’ (control) are recommended.
Zahra Shabani; Bahram Abedi; Ebrahim Gangi Moghadam; Ali Tehranifar
Abstract
Introduction: This study was conducted aimed to consider the effects of culture medium and the concentration of growth regulators on proliferation, rooting and the acclimatization of Myrobalan29C. This study was performed as a factorial experiment in a completely randomized design (CRD) with four replications ...
Read More
Introduction: This study was conducted aimed to consider the effects of culture medium and the concentration of growth regulators on proliferation, rooting and the acclimatization of Myrobalan29C. This study was performed as a factorial experiment in a completely randomized design (CRD) with four replications where each plot contained five explants. Given the role of trees rootstock of growth rate vegetative in the early maturity٫ yield and disease resistance will be suitable rootstock that has an important role in program garden management. In total rootstock of fruit trees have be propagation sexual and asexual methods, however٫ given that in sexual reproduction the resulting dispersion characteristics and the resulting seedlings changed by genetics, it is tried for decades to asexual propagation methods in specially tissue culture methods healthy rootstock for mass propagation and used the development of orchards. Seedling rootstock Myrobalan had been used in the past. The rootstock can be positive features cited the ease of access, to be cheap, good yields after maturity. In study, the effects of NAA and BAP on proliferation of Gisala5 rootstock showed the most shoot treated in mediacontaining 1mg/l BAP. Investigated Chinese plum in vitro micropropagation showed that 1/2 MS media had the highest percentage rooting, and acclimatization rooted plantlets to greenhouse conditions was using the system miss successfully. Due to the importance and essential to achieve an efficient protocol for the mass propagation of Myrobalan 29C in Iran, this study was conducted with the main purpose of evaluating the most suitable media culture and plant growth regulators in micropropagation of Myrobalan 29C.
Material and methods: The explants were collected from shoots of Myrobalan 29C rootstock maintained in the experimental greenhouse of Khorasan Razavi Agricultural and Natural Resources Research Centre (of Mashhad, Iran), on June 25, 2013. The explants were washed by water and dishwashing liquid to removed surface contamination. Then they were divided to some parts containing one bud and were sterilized with ethanol 70% 1 min and sodium hypochlorite 10% at 10 min. Proliferation was performed in two kind of culture medium (MS and DKW) that supplemented with plant growth regulators BAP (0, 1, 2, 3, 4 mg l-1). The rootstocks of in this step, after subculture three (21 days between each subculture), the numbers, the length and quality of the shoots (explants strong growth, with no signs of vitrification, necrosis of leaf are yellowing terminal meristem), b– less than 15% have the symptoms of vitrification, necrosis of leaf are yellowing terminal meristem, and c– explant weak, 15-30% have the symptoms of vitrification, necrosis of leaf are yellowing Terminal meristem) were measured. This stage was carried with four replications and each replicates with five samples. Two culture media (MS and DKW) were used for rooting, which supplemented with indole-3-butyric acid (IBA) at four levels (0, 1, 2, 3 mg l-1). This stage was carried with four replications and each replicates with three samples. After being rooted explants, the best cultured media and combination of rooting growth regulators number and root length, leaf number and stem length and quality of explants were recorded. Acclimatization used in substrate including Coco Peat - Perlite 3:0/5 V, Coco Peat 100%V٫ Coco Peat - Perlite 0.5:3V, Perlite100%V and Coco Peat - Perlite1:1V).
Results and Discussions: Results showed that the 10% sodium hypochlorite for 10 min, with 4% decay was the best treatment for sterilization. The results showed that the proliferation average was 6/16 in MS medium with 2 mgl-1 BAP and the most percent of rooting and root length were about 100% and 2/51 cm in MS medium with 2mgl-1 of IBA, respectively. The acclimatization of plantlets to greenhouse conditions was successful. The highest rate of plantlets survival (about 70%) was obtained from substrate Cocopit and Prlit (1; 1 V). In the present study, explants year compared annual explant least contamination had enjoyed. It seems that the young explants, smooth the surface of the skin, having the least amount of crack depend on the type of surface depressions explants and the crack and lower depressions the surface explants increase surface contact area disinfectants and also improve its impact. In this study found that the type of medium a significant impacted on the health of plants and so the proliferation of explants was successful. Usually root production in plants under the influence of synthesis, metabolism, and transport is auxin signaling pathways. Therefore acclimatization directly affected the rooting of plants that had high quality and the best rate of induction.
Conclusions: The results of this research showed that we can duplicate Myrobalan29c rootstock by in vitro method. According in this research, MS media including BAP and IBA plant growth regulators are the most suitable for micro propagation.
Zohre Hoshyar; Ebrahim Ganji Moghadam; Bahram Abedy
Abstract
Introduction:Dormancy is one of the most important stages in the life cycle of temperate plants and plants are required to exit from it with supply of chill unit. Flowering is defined with chilling and heat requirement. Owing to low chilling requirement, blooming happens too early and cold temperatures ...
Read More
Introduction:Dormancy is one of the most important stages in the life cycle of temperate plants and plants are required to exit from it with supply of chill unit. Flowering is defined with chilling and heat requirement. Owing to low chilling requirement, blooming happens too early and cold temperatures produce an important loss of yield by frost. In temperate fruits, awareness of the need buds to avoid winter frost is one of the main objectives in breeding programs. Studies concerning chilling and heat requirements are thus of special interest in these species, being very important for the choice of parents in breeding programs to create superior varieties of winter and spring frost (late flowering and resistant cold) provide. Utah is one of the most important model was introduced in 1974 by Richardson and colleagues. Effective temperature on cold storage in Utah model is 1/9-5/2. This is 6/1-9/12 in North Carolina and 8/1-9/13 in low chilling. Temperatures above 16 have negative effect on accumulation in Utah model. Later models were developed according to the Utah model that the Low chilling requirement (18) and the North Carolina (31) models are among them. Apricot (Prunus armeniaca L.) is belonging to warm temperate regions and due to the lack of compatibility and apricot spring frost in Khorasan Razavi province, the identification of varieties and genotypes with high compatibility and high thermal and cooling requirements to reduce the risk of early frost and increase production efficiency, seems important. The purpose of this study was to determine the need for chilling and heat requirement in apricot cultivars.
Material and methods: In this research, chilling and heating requirements of four local cultivars of apricot were evaluated under field and laboratory conditions. This experiment was conducted at agricultural research station Golmakan. A factorial (two-factor) experiment was laid out in a completely randomized design with tree replications. First factor was various apricot cultivars (Noori- Dirras, Mashhad- Dirras, Shams Mashhad and Mashhad-44) and the second factor was chilling hours in five levels (0,100,300,500,700). About 45 branches of deciduous trees of each variety were collected when the temperature was below 7 °C. Finally, samples were taken in the greenhouse with an average temperature of 23° C and 16 hours of light and flowering percentage was recorded. For determination of chilling requirement in Utah, low chilling requirement and the North Carolina was performed in CU and Heat based on the degree of development hours (GDH) was calculated. GDHs average hours of temperatures between 5-5 / 4 ° C) and for any amount of time, sleep disruption and blossoming flowers will be calculated by 50% (5). Data analysis was done by JMP 8 and Excel softwares.
Results: There were significant differences (1%) between chilling hours, cultivars and their interactions on flowering percent. .Under laboratory condition, cultivars began flowering after 100 hours in 4°C.The results showed that there was a significant difference between 500 and 700 hours of chilling requirement. Most of the flowering was related to 700 hours and the lowest one was in control.
There was a low difference in the chilling requirement. Heating requirement was 3300 growth degree hours (GDH) for Noori- Dirras and Shams Mashhad to 3379 GDH for Dirras- Mashhad and Mashhad-44 cultivars. Although little differences exist in flowering onset of cultivars, the differentiation of flowering period among cultivars was around one week. Various cultivars revealed little differences in flowering onset in locations they meet their chilling requirement. The chill units estimated by Utah model was 1588. Chill units in Low chilling model and North Carolina model was 1291 and 1331, respectively while in chill hours was about 1100. The heat units in Noori- Dirras, Shams Mashhad was about 3,300 and it were calculated 3379 for Dirras Mashhad and Mashhad-44, . The various models of chilling in the field conditions were calculated according to the Utah model. Chilling requirement by the North Carolina and Low chilling requirement models were calculated, respectively, 1331 and 1291 chill unit while in the chill hours, 1,100 hours were calculated for varieties. There was negative relationship between chill and heat requirement in flowering date.