Growing vegetables
Javad Hamzei; Masud Khishvand
Abstract
Introduction
Due to the limits of the conventional agricultural system, intercropping is important in terms of production sustainability. Intercropping plays an important role in increasing production and performance stability to improve the use of resources and environmental factors. Spinach ...
Read More
Introduction
Due to the limits of the conventional agricultural system, intercropping is important in terms of production sustainability. Intercropping plays an important role in increasing production and performance stability to improve the use of resources and environmental factors. Spinach (Spinacia oleracea L.) is an important leafy vegetable, of which the leaves and tender shoots are consumed fresh or processed. Spinach is native to Iran. Spinach contains different flavonoids that function as antioxidants and anticancer agents. Also, spinach may be used in the prevention of Alzheimer's disease. It is an annual plant and as well as chickpea, spinach is grown as both an early spring and late fall crop in order to have growth at the coolest parts of the season. Spinach seed yield varies based on the climatic conditions, optimum sowing date and chose of the best planting pattern. Considering that the intercropping of this plant has not been studied with legumes such as chickpe, this experiment was designed to determine the possibility of intercropping spinach with chickpea using agronomical and economical indices, as well as determining the best planting pattern.
Materials and Methods
In order to investigate agronomic traits, yield and economical indices in spinach intercropping with chickpea, an experiment was carried out as a randomized complete block design with four treatments and three replications in 2017-18 growing season in Tuyserkan city, Hamedan province. In this city, spinach is mainly cultivated for seed production. Experimental treatments included additive intercropping of 20% chickpea with spinach, replacement intercropping of 60% spinach + 40% chickpea and pure stand of spinach and chickpea. Plant height, number of branches per plant, number of seeds per plant, 1000 seed weight, grain yield and biological yield in spinach, as well as plant height, number of branches per plant, number of pods per plant, number of seeds per pod, 1000 seed weight, grain yield and biological yield in chickpea were measured. To compare the advantages of intercropping of spinach with chickpea, the land equivalent ratio (LER), dry matter equivalent ratio (DMER), system productivity index (SPI), competitive ratio (CR), aggressivity (AG), actual yield loss (AYL ), relative value total (RVT), monetary advantage index (MAI) and intercropping advantage (IA) were calculated and evaluated. SAS 9.1 software were used for analysis of variance (ANOVA) calculations. The difference between the means was evaluated by the least significant difference (LSD) method at the level of 5% probability.
Results and Discussion
Plant height, number of branches per plant, 1000 grain weight and grain and biological yields of spinach were significantly affected by intercropping. The highest plant height and the lowest number of branches per spinach plant were obtained from the replacement intercropping. Additive intercropping and pure stand of spinach without significant difference had the lowest plant height and the highest number of branches per plant. The highest 1000 grain weight and grain yield of spinach were associated with the additive intercropping method. However, in terms of biological yield, the pure stand of spinach showed the highest results. Notably, there were no significant differences between the treatments of additive intercropping and pure stand of spinach concerning grain and biological yield of spinach. On the other hand, in chickpeas plants, intercropping had a notable impact on various parameters. Specifically, plant height, number of branches per plant, number of pods per plant, 1000 grain weight, and both grain and biological yields were affected by the intercropping method. Among these, the additive intercropping treatment resulted in the highest plant height, while it had the lowest number of branches and number of pods per chickpeas plant.The highest 1000 grain weight and grain yield of spinach were related to the additive intercropping. Pure stand of spinach had the maximum biological yield. Treatments of additive intercropping and pure stand of spinach were not significantly different in terms of grain and biological yield of spinach. In chickpeas plant, plant height, number of branches per plant, number of pods per plant, 1000 grain weight, grain and biological yields were affected by intercropping. The highest plant height and the lowest number of branches and number of pods per chickpeas plant were obtained at the treatment of additive intercropping. Maximum grain and biological yields of chickpea were belonged to the pure stand of chickpea. Spinach and chickpea were dominant and recessive plants, respectively. Evaluation of the economical indices also showed the advantages of spinach intercropping with chickpea at both intercropping design (replacemet and additive intercropping). So that the highest values for land equivalent ratio, dry matter equivalent ratio, system productivity index, actual yield loss, relative value total and monetary advantage index were achieved at additive intercropping system. But, the lowest values for these indices (1.13, 1.06, 1.20 and 1321 for LER, DMER, RVT and MAI, respectively) were revealed at replacement intercropping.
Conclusion
Overall, the results indicate that chickpea is a suitable plant for intercropping with spinach. So that the intercropping of 20% chickpea with spinach improved the yield performance of spinach and land-use efficiency and can lead to the greatest economical profit.
Fatemeh Salimi; Mohammad Fattahi; Javad Hamzei
Abstract
Introduction: Medicinal plants contain antioxidant compounds are benefits to human health and celery as a medicinal plant, is rich in antioxidant. Celery (Apiumgraveolens L.) seed has a lot of essential oil (EO) and this EOs has long been used for fragrance industries, spice, pharmacological and cure ...
Read More
Introduction: Medicinal plants contain antioxidant compounds are benefits to human health and celery as a medicinal plant, is rich in antioxidant. Celery (Apiumgraveolens L.) seed has a lot of essential oil (EO) and this EOs has long been used for fragrance industries, spice, pharmacological and cure diseases. EO for celery seeds is 1.5-3% (v/w). Although a number of methods are applied for the acquisition of essential oils, the most frequently used method is steam distillation. Among EO extraction methods, ultrasound-assisted extraction (UAE) is an inexpensive, simple, and efficient extraction technique. This is most likely due to the intensification of mass transport and to the facilitation of solvent penetration into plant tissues which are damaged by the ultrasounds. Response surface methodology (RSM) is a powerful mathematical model with a collection of statistical techniques where in, interactions between multiple process variables can be identified with fewer experimental trials. It is widely used to examine and optimize the operational variables for experiment designing, model developing and factors and condition optimization. Antioxidants deactivate free radicals before they can damage to the bimolecular cells structure. In the present study, to find effective antioxidant constitutes of EO, antioxidant activity were determined using DPPH scavenging assay and FRAP methods.
Materials and Methods: In this research, the effect of seed to water ratio (X1), ultrasonic time (X2), and extraction time (X3) on essential oil extraction (v/w) from wild celery seeds were evaluated by the following equations. Antioxidant activity ofEO was measured via two methods of FRAP, and %DPPH30min.
%EO (v/w) = 1.200000 + 0.075000 X1 -0.300000X2 + 0.875000X3 + 0.725000X12 – 0.825000X22 + 0.725000X32+ 0.300000X1X2 – 0.150000X1X3 + 0.300000X2X3
%DPPH30min = 60.4136 + 6.3782 X1 -22.7935X2 + 3.7569X3 – 8.0662X12 – 45.5443X22 – 13.5193X32- 6.6459X1X2 – 5.8430X1X3 + 21.7333X2X3
FRAP (µMFe+2/50µl EO) = 1432.94+ 166.65 X1 + 166.22X2 + 126.29X3 – 384.48X12 – 1215.25X22 – 322.43X32- 87.85X1X2 + 575.35X1X3 – 219.80X2X3
For optimization of EO extraction conditions, the RSM method was used. A Box–Behnken design (BBD) with three center points was used to study the effects of three independent variables, water to seed ratio (X1), ultrasonic time (X2), and extraction time (X3) on three dependent responses (EO, %DPPH30min, and FRAP). The independent variables were transformed to three levels (−1, 0, 1), and the complete design consisted of 15 experimental runs with three replications of the center points. The following quadratic polynomial model was fitted to the predicted responses of EO, %DPPH30min, and FRAP with changing water to seed ratio (X1 = 375, 500, and 625 ml water to 35g seed); ultrasonic time (X2= 10, 20, and 30 min); and extraction time (X3=1, 2, and 3 h) in extraction samples; Where EO, %DPPH30min, and FRAP stands (Yn) for the predicted responses for X1–X3; b0 is the constant coefficient; b1, b2, and b3 are the linear coefficients; b11, b22, and b33 are the quadratic coefficients; and b12, b13, and b23 are the cross-coefficients. The accuracy of the estimated coefficient was analyzed by ANOVA method and the model accuracy was obtained using the F test at 1 and 5 % by indicating coefficient R2.
Yn = b0 +
Results and DiscussionAccording to the results, the best ratio of treatments (optimized condition) was 35g seed to 625 ml water ratio, ultrasonic time of 20 min, and extraction time of 3h. At this optimization conditions, the ratio of 35g seed/625 ml water, non-using ultrasonic, and extraction time of 3h was used as a control treatment. Under optimized condition, the highest essential oil percentage (v/w) and antioxidant activity with styles of FRAP, and %DPPH30min was obtained 2.33% (v/w), 1513.6µMFe+2/50µl EO and 48.52%, respectively. However, at the control treatment, the highest essential oil percentage (v/w) and antioxidant activity with styles of FRAP, and %DPPH30minwas revealed at 1.45 % (v/w), 1064µMFe+2/50µl EO and 29.30%, respectively. In the study of optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology and also, optimization of ultrasonic-assisted extraction of pomegranate seed oil were shown similarity results.
ConclusionsThe values of adjusted R-squared (0.9972, 0.9598, 0.9472) for the equation are reasonably close to 1, indicated a high degree of correlation between the observed and predicted values. Therefore, the experimental values were agreed with those predicted by RSM models, and it suggested that using RSM method foroptimization of extraction condition is suitable. Furthermore, application of ultrasonic technology increased essential oil extraction and its antioxidant activity. In addition, results indicated that the UAE method is a powerful tool for the extraction essential oil from seeds.
Fatemeh Salimi; Farid Shekari; Javad Hamzei
Abstract
Using plant growth regulators at the stresses environment can improve plant growth and crop production. Hence, in this research response of photosynthesis rate, chlorophyll, soluble sugar and flower dry weight of chamomile to methyl jasmonate under different salinity levels was studied. Values of 0 (control), ...
Read More
Using plant growth regulators at the stresses environment can improve plant growth and crop production. Hence, in this research response of photosynthesis rate, chlorophyll, soluble sugar and flower dry weight of chamomile to methyl jasmonate under different salinity levels was studied. Values of 0 (control), 75, 150, 225 and 300μM methyl jasmonate (MeJA) with salinity levels of 2, 6, 10 and 14 dS/m was evaluated as a factorial experiment based on a randomized complete block design with three replications. The effect of MeJA and salinity was significant for photosynthesis rate, leaf temperature difference (T), relative water content (RWC), chlorophyll a, chlorophyll b, total chlorophyll, soluble sugar and flower dry weight. Also, MeJA × salinity interaction affected all traits except T. The highest value of photosynthetic rate (9.99 µmol CO2 m-2 s-1 ), chlorophyll a, b and total chlorophyll, in averaging 5.98, 41.18 and 45.10 mg g-1, respectively, and flower dry weight (3.73 g pot-1) were obtained at 75μM MeJA and 6 dS/m salinity. But, there was no significant difference between 75μM MeJA×6 dS/m and 75μM MeJA×2dS/m for RWC and flower dry weight traits. Maximum soluble sugar was achieved at 75μM MeJA×14 dS/m treatment. In general, using of MeJA increased RWC and decreased undesirable effects of salinity. With decreasing RWC photosynthetic rate, chlorophyll and flower dry weight decreased, but T increased.