Pomology
Saeid Fatahi Siahkamary; Vali Rabiei; Mahmood Shoor; silvana nicola
Abstract
The Lycium genus of the Solanaceae family has excellent nutritional and medicinal value. Two species of Lycium barbarum L. and Lycium chinense Mill. It is often called wolfberry or goji berry. The use of amino acids for horticultural crops is common worldwide, and many chemicals used as biostimulants ...
Read More
The Lycium genus of the Solanaceae family has excellent nutritional and medicinal value. Two species of Lycium barbarum L. and Lycium chinense Mill. It is often called wolfberry or goji berry. The use of amino acids for horticultural crops is common worldwide, and many chemicals used as biostimulants are mixtures of amino acids. The effect of amino acids on plants seems to depend on the type of amino acid supplied and the type of plant. Selenium (Se) is an important component of selenoproteins and seleno-amino acids. Therefore, it has played many roles in the growth and function of living cells and important biological functions in animals and humans. Also Se is very similar in properties to sulfur and can act as S in biochemical systems. Biological fertilizers are fertile materials that contain one or more beneficial soil organisms within a suitable carrier. Overall, these fertilizers contain different types of microorganisms that can convert nutrients from unavailable form to available form through a biological process. The application of supernitroxin fertilizer by stimulating the synthesis of plant hormones increased the growth indicators of sesame varieties.This experiment was conducted in the Research farm University of Mashhad, during 2021 and 2022 years. In early May, goji berry seedlings were planted in the field to check the effect of the L-phenylalanine (Phe), sodium selenate (Se), and Nitroxine were applied before harvesting and foliar spraying on the Goji berry plant during the growth stages. To conduct experiment, two-year-old seedlings of Goji berry cultivar GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province, and after the seedlings were transferred to ground and established, initial foliar spraying was done. In order to evaluate the effect of L-phenylalanine, selenium, and nitroxine treatments, experiment were conducted as a randomized complete block design in 5 replications which factors include the amino acid L-phenylalanine (Phe: 0.5, 1, and 1.5 mM), sodium selenate (Se: 0.25, 0.5, and 1 mg.L-1) and nitroxin biological fertilizer (170, 330, and 500 μl/L) at three levels and distilled water was applied as a control. One pot was considered for each repetition and a total of 10 pots were considered along with the control. Plants were sprayed every 15 days after establishment. After the three stages of foliar spraying, the content of phenol and flavonoid content and antioxidant activity, PAL and anthocyanin were measured.The results showed that the treatments used in this experiment had a significant effect on the physiological and chemical characteristics of the goji berry plant. The results showed that the highest amount of titratable acidity (0.896%) was obtained in samples treated with nitroxine at a concentration of 333 microliters. The highest amount (18.56 mg/g) of this index was obtained in fruits treated with phenylalanine at a concentration of 1.5 mM. The highest amount of this index was obtained in the fruits treated with phenylalanine at a concentration of 1 mM, which was 61.98% higher than the amount of flavonoid recorded in goji berries under control conditions. Also, the results showed that despite the decrease in the activity of PAL enzyme during the increase of selenium concentration, the activity of this enzyme was 13.66% higher than the activity of PAL enzyme under the condition of using selenium at a concentration of 1 mg/liter. The increase in the functioning of the antioxidant system is determined by the total antioxidant, which is controlled by the content of low-molecular components and the activity of antioxidant enzymes. Compounds such as ascorbic acid, glutathione, tocopherol, carotenoids, anthocyanins, endogenous metal chelators, TPC, TFC and alkaloids are low molecular weight antioxidants. Also nitroxin, supernitroplus, phosphate and mycorrhizal fertilizers. Nitroxin binds N in the atmosphere and balances the absorption of nutrient element in the plant. Nitroxin is responsible for the secretion of amino acids, antibiotics, hydrogen cyanide and siderophores, which promote the growth and development of plant roots and shoots, protect the roots from pathogens, thereby increasing yield. A sufficient supply of phenylalanine through the use of exogenous Phe or endogenous Phe provided by the shikimic acid pathway may be required to stimulate the activity of the phenylpropanoid pathway, as shown by the high PAL activity responsible for the accumulation of phenols, flavocyanins and anthocyanins. This leads to the need for ROS accumulation. Anthocyanins are groups of flavonoids found in vacuoles epidermal and mesophyll cells of plants. Anthocyanins can protect chlorophyll from light oxidation and, compared to other components, is a better indicator of plant oxidative stress caused by external factors that accumulate in plantsThe present study was conducted with the aim of studying the effect of L-phenylalanine, selenium and nitroxin biofertilizer on improving the vegetative growth, yield and secondary metabolites of gojiberry during two crop years. To conduct the experiment, two-year-old seedlings of Goji berry variety GB1 were obtained from Mashhad Seedling Company located in Razavi Khorasan province. The results showed that the use of L-phenylalanine amino acid, selenium and nitroxin biofertilizer had significant effects on the investigated traits during the experiment. So that the use of nitroxin at a concentration of 166 microliters increased the amount of soluble solids and at a concentration of 333 the titratable acidity compared to the control samples. PAL enzyme was obtained in the conditions of using phenylalanine at a concentration of 1.5 mM, which was 52.17% more than the level of PAL enzyme activity recorded in control conditions.
Postharvest physiology
Fahime Nasr; Vali Rabiei; Farhang Razavi; Gholamreza Gohari
Abstract
Introduction
Persimmon (Diospyros kaki Thunb.) is an important fruit that is consumed due to high nutritional, desirable taste and flavor. Unfortunately, most persimmon fruit producers do not use the suitable technology to preserve the fruit quality, consequently, marketing their product at lower ...
Read More
Introduction
Persimmon (Diospyros kaki Thunb.) is an important fruit that is consumed due to high nutritional, desirable taste and flavor. Unfortunately, most persimmon fruit producers do not use the suitable technology to preserve the fruit quality, consequently, marketing their product at lower prices. The fruit of Karaj cultivar is one of the best and highest quality cultivars in Iran but this fruit is sensitive to chilling injury and shows drastic softening and reduced nutritional value as chilling damage. Appliacation of effective treatments for reducing chilling symptoms and preserve quality can lead to the increase of shelf life in this fruit. Ascorbic acid is an important nutrient that it is required for the functioning of several enzymes and is important for immune system function. It also functions as an antioxidant. Recently this treatment has gained much attention for use as an environmentally friendly technology for the maintenance of postharvest quality of many horticultural crops. In this regard, the aim of the present study was to assess the effect of ascorbic acid and storage time on the postharvest life of persimmon fruit.
Materials and Methods
Persimmon fruit (cv.‘Karaj’) was first harvested at physiological maturity stage from a commercial orchard in Karaj city, then immediately transported to the postharvest laboratory at University of Zanjan. Fruit selected for uniformity of size, shape, color and free from disease or mechanical damage. The treatments included ascorbic acid at three levels (15, 30 and distilled water as a control mmol.L-1) and storage time at three levels (15, 30 and 45 day). Fruit was dipped in solution of Ascorbic acid 15 and 30 mmol.L-1 and distilled water (control) for 10 min. After treatment, the fruits were stored at +4°C and 85-90% relative humidity for 45 days. Fruits were sampled during storage after (15, 30 and 45 days) and 24 hours maintaining at room temperature and fruit firmness, weight loss, TSS, TA, vitamin C, total flavonoids, total phenol, soluble tannins, total carotenoids, antioxidant capacity and MDA were measured at the end of each period. Persimmon fruit samples were weighed before and after the storage to calculate weight loss (%) during storage by using the formula of [(weight of fruits before the storage − weight of fruits after the storage)/weight of fruits before storage] × 100. Fruit firmness was determined using OSK 1618 penetrometer equipped with an 8 mm tip at 3 equatorial points, and the results were expressed as kg/cm2, Soluble tannin was measured by using the method of Tiara (1996). Total carotenoid was measured based on wang et al (2006), Total soluble solid (TSS) was measured by using refractometer, Ascorbic acid content was determined by using the method of Jalilimarandi (2000) and Antioxidant activity was evaluated by measuring the scavenging activity of the examined extracts on the 2,2-diphenylhydrazil (DPPH) radical as described by Dehghan and Khoshkam (2012). Statistical analysis was performed using SAS V9 software and the treatment means were separated by Duncan’s multiple range tests.
Results and Discussion
Results showed that all treatments showed significant effect on evaluated traits. All treatments preserved vitamin C and antioxidant activity of fruit compared with control. Ascorbic acid 30 mmol.L-1 significantly preserved firmness, soluble tannin, total phenol, flavonoid, antioxidant capacity. Based on current results that ascorbic acid 15 and 30 mmol.L-1 treatments were the most effective in delaying decrease weight loss by reduced metabolic activity, delayed senescence, and maintained better cellular integrity thereby worked in an integrated manner to reduce fresh weight loss of persimmon fruit. Increasing Ascorbic acid suppressed oxidative damage possibly by quenching hydrogen peroxide and superoxide anion. Therefore, positively correlated with higher membrane integrity and less MDA of persimmon fruit. Ascorbic acid is not only an important nutraceutical compound but also a critical antioxidant that positively eliminates certain reactive oxygen species and preserve antioxidant compounds such as phenol, flavonoid, carotenoid and vitamin C in post-harvest. Ascorbic acid 15 and 30 mmol.L-1 treatments used in this experiment had no effect in changes TSS and total carotenoid. So ascorbic acid can improve effectively the quality and increase shelf life of fresh persimmon fruit in post-harvest.
Conclusion
In conclusion, our research indicates that ascorbic acid could prolong postharvest life of persimmon fruit by maintaining fruit quality attributes. Ascorbic acid treatment significantly is effective in preserving, firmness antioxidant compounds, quality properties and increasing the storage time of persimmon fruit of Karaj cultivar without harmful for human health. Hence, ascorbic acid treatment is a safe and applicable method of increasing the shelf life and preserving the quality in persimmon during cold storage.
Mohsen Moradi; Farhang Razavi; Vali Rabiei; Morteza Soleimani Aghdam; Leila Salehi
Abstract
Introduction: In recent years, γ-aminobutyric acid (GABA), a non-proteinogenic four-carbon signaling amino acid, has been employed as a safe strategy for attenuating chilling injury and fungal decay, delaying senescence and keeping sensory and nutritional quality of fruits and vegetables during postharvest ...
Read More
Introduction: In recent years, γ-aminobutyric acid (GABA), a non-proteinogenic four-carbon signaling amino acid, has been employed as a safe strategy for attenuating chilling injury and fungal decay, delaying senescence and keeping sensory and nutritional quality of fruits and vegetables during postharvest life. In addition to applying GABA as exogenous safe procedure, heightening cellular GABA shunt pathway activity also is pivotal for attenuating chilling injury and fungal decay, delaying senescence and keeping sensory and nutritional quality of fruits and vegetables during postharvest life. Low temperature storage is widely employed for prolonging postharvest life of fruits and vegetables accompanying by keeping sensory and nutritional quality. Tomato is one of the most important horticultural crops, which exhibits higher benefits for human health but being endemic to subtropical climates, they are very vulnerable to chilling injury. Cold storage application is normally employed as a regular low-cost real postharvest technology. Owing to its great socio-economic significance, great efforts have been done by researchers to attenuating chilling injury in tomato fruits during low temperature storage employing safe strategies such as melatonin, brassinosteroids, salicylic acid, nitric oxide, and gibberellic acid. Attenuating chilling injury in tomato fruits by postharvest treatments may attribute to keeping safe membrane integrity representing by lower electrolyte leakage and malondialdehyde (MDA) accumulation occurring by eliciting endogenous polyamines, proline and nitric oxide accumulation by activating CBF1 signaling pathway, hampering phospholipase D (PLD) and lipoxygenase (LOX) enzymes activity, activating reactive oxygen species (ROS) scavenging enzymes activity resulting in higher ascorbic acid and glutathione accumulation, maintaining endogenous GA3 homeostasis occurring by higher CBF1 signaling pathway concurrent with higher endogenous salicylic acid accumulation, which not only are pivotal for conferring chilling tolerance in tomato fruits but also are crucial for preserving sensory and nutritional quality.
Material and Methods: Tomato fruits (Solanum lycopersicum cv. Izmir) were picked at the mature green stage in Zanjan Province, Iran, and transported to the fruit analysis laboratory at Zanjan University. In the laboratory, the fruit was screened for uniform size, maturity, and absence of mechanical damage. Fruits (1440) were divided into four groups, each consisting of 360 fruits. The experiment was done in triplicate in which each replicate consisted of 120 fruits. The exogenous GABA applying was done by immersing of fruits in GABA at 0, 0.1, 1, and 5 mM for 15 min at 20 ˚C. Then, fruits were air dried at room temperature and stored at 4 ± 0.5 ºC (85–90 % RH) for 28 days. After assessment of chilling injury every 7 days during storage at 4 ˚C followed by shelf life at 25 ºC for 3 days, biochemical analyses were performed.
Results and Discussion: In recent experiment, we showed that the exogenous GABA applying, especially at 5 mM, is beneficial for attenuating chilling injury in tomato fruits during storage at 4 ºC for 28 days which was associated with higher membrane integrity representing by lower electrolyte leakage and malondialdehyde (MDA) accumulation. Keeping safe membrane integrity in tomato fruits in response to exogenous GABA applying may ascribe to triggering reactive oxygen species (ROS) scavenging catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymes activity giving rise to higher endogenous ascorbic acid accumulation concomitant with promoting phenylpropanoid pathway activity representing by higher phenylalanine ammonia lyase (PAL) enzyme activity giving rise to higher phenols and flavonoids accumulation and superior DPPH scavenging capacity.
Conclusion: Therefore, exogenous application of GABA not only is proficient for attenuating chilling injury but also is beneficial for preserving nutritional quality of tomato fruits during storage at 4 ºC for 28 days.
Mohsen Mozaffari; Farhang Razavi; Vali Rabiei; Azizollah Kheiry; Akbar Hassani
Abstract
Introduction: Demand for healthy and high-quality fruits has increased in the markets, and compositions such as vitamins, sugars, and anti-oxidant properties of fruits have attracted many consumers. Grapes contain phenols, flavonoids, anthocyanins, tannins and vitamins with high antioxidant properties. ...
Read More
Introduction: Demand for healthy and high-quality fruits has increased in the markets, and compositions such as vitamins, sugars, and anti-oxidant properties of fruits have attracted many consumers. Grapes contain phenols, flavonoids, anthocyanins, tannins and vitamins with high antioxidant properties. Antioxidants support biological systems such as proteins, amino acids, lipids, and DNA against oxidative damage produced by active oxygen species of ROS, resulting in reduction of cell damage and death, cardiovascular disease and cancers in the human body. Selenium is essential for humans and animals and should be fed through a diet, for this reason, FAO recommends entering selenium to agricultural products (especially fruits and vegetables). In recent years, selenium has been recognized as a useful element for plants that have been toxic at high concentrations but at desirable concentrations, it has positive antioxidant effects, increases growth and significantly affects seed germination. Selenium protects plants from several abiotic stresses such as heavy metal and arsenic, ultraviolet radiation, and biotic stress such as pathogens and pests. Selenium neutralizes oxidative stress interfering with lipid peroxidation, and accelerates gluthatione peroxidase (GSH-Px) activity, this phenomenon delay plant senescence and diminish postharvest losses. This element increases the yield and improves the quality of the fruits and vegetables. When Camelia oleifera plants were treated with selenium, cellular content of linoleic acid and sterol were elevated but oleic acid content diminished. Selenium treatment had a significant effect on preserving the sensory and the postharvest quality by decreasing respiration rate and ethylene biosynthesis in broccoli by diminishing phenylalanine ammonia-lyase (PAL) activity and ethylene production in lettuce and chicory. Foliar application of peach and pear trees with selenium, decelerated fruit softening rate and elongated shelf-life. Therefore, treatment of agricultural products with the appropriate amount of selenium can have a positive effect on the increase of the quality and enrichment of selenium in fruits and also play an important role in human health.
Materials and Methods: In order to investigate the effect of selenium as foliar application (0, 1, 2 and 3 mg L-1) on quality traits, antioxidant compounds and enrichment of grape cv. Fakhri, an experiment based on randomized complete block design with three replications in a vineyard (Kurdistan Povince, Ghorveh town) was performed. The 15-year-old vines were sprayed with selenium solution plus 0.1% of Twin 20 as surfactant until the leaves were completely wet (for each vine about 0.5 liter) at three stages of berry growth and development: Berry formation, Lag phase and veraison. A 1000 mg L -1 stock solutions (Made by the Belgian company CHEM-Lab, containing selenium ion Se+6) was used to prepare the desired solutions. At commercial fruit maturity stage (20° Brix), samples of fruits and leaves randomly were collected from treated and control vines and were immediately transferred to the postharvest physiology laboratory. Traits such as total chlorophyll, carotenoid, nitrogen, potassium, selenium content of leaves and fruits, and also, total soluble solids, soluble sugars, titrable acidity, acidity (pH), vitamin C, phenol and flavonoids, antioxidant capacity in fruits and the berry weight were evaluated. Data were analyzed using SAS statistical software (SAS V.9.4), and means were compared by Duncan’s multiple range tests at the 5% of probability level.
Results and Discussion: Results showed positive effects of selenium treatment on evaluated traits. As a result, 2 mg L-1 of selenium increased photosynthetic pigments, nitrogen and leaf potassium, soluble solids, soluble sugars, vitamin C, total phenol, antioxidant capacity of fruits in comparison with untreated vines. The highest amount of titrable acidity, total fruit flavonoid and leaf selenium was recorded in vines treated with 3 mg L-1 selenium, whereas, this treatment had less effect on other traits. The highest amount of berry weight was obtained in 1 mg L-1 of selenium. However, none of the selenium treatments had significant effect on the juice acidity (pH). In general, the results showed a positive effect of selenium on improvement of antioxidant properties, quality and enrichment of grape, and 2 mg L-1 selenium with the highest effect on traits was identified as the best treatment. According to other researchers, foliar application of selenium in "Starking Delicious" apple cultivar was effective in enhancement of fruit selenium content and nutritional properties, postponing the flesh firmness decrease, and delaying fruit ripening resulting from less ethylene production, therefore significantly affecting apple fruit quality and storage life.
Ebrahim Abedi Gheshlaghi; Vali Rabiei; Malek Ghasemi; Javad Fattahi Moghadam; Farhang Razavi
Abstract
Introduction: It is important to understand the structural events associated with flower morphogenesis in horticultural plants, because it has many aspects of practical horticultural significance. Information about different stages of flower initiation and development is important for better management ...
Read More
Introduction: It is important to understand the structural events associated with flower morphogenesis in horticultural plants, because it has many aspects of practical horticultural significance. Information about different stages of flower initiation and development is important for better management of the vineyardsand fruit set. Knowledge of floral ontogeny in kiwifruit is also important for the establishment of breeding programs and for the understanding of the evolutionary processes involved in the development of the floral organs. The main objective of this study was documentation of the differentiation stages of flower buds for better understanding of morphological and external changes in (Actinidiadeliciosa[A. Chev.] C.F. Liang &A.R. Ferguson var.deliciosa) cvs.Hayward (female) and Tomuri (male).
Materials and Methods: The experiment was carried out over two years in a mature 'Hayward' and ‘Tomuri’ kiwifruit vineyard at the Citrus and Subtropical Research Center of Iran (Ramsar city). Pistillate and staminate flowers development was followed from the stage of undifferentiated primordia, present in the axils of leaf primordia in dormant buds since mid-March to early June 2015 and 2016. Equally buds in diameter and size from sixth to twentieth buds on one-year old cane of Hayward and Tomuri selected at 5 to 7 days intervals. They were sampled and fixed in a solution of formalin, ethanol 70%, glacial acetic acid (2:5:1 FAA) then stored in refrigerator. Fifteen buds of each sample dissected under a Nikon SMZ645 stereo zoom microscope. The very dense pubescence within the buds was removed manually without damaging the axillary flower primordia. The remaining pubescence was removed using dissecting needles. Various stages of flower differentiation were explained with principal growth stage 5 of BBCH scale.
Results and Discussion: The first signs of the flower on Tomuri were observed 2 days before bud swelling stage (01), on the March 12th, about one month before bud break in 2015. While in the Hayward variety the first signs of the flower primordia were observed on the March 21th of 2015 (9 days later). At the beginning of bud swelling (01), flower primordia begin to differentiation and at advanced bud swelling stage (03), bracts and sepals initiated. As development proceeded, different parts of flowers initiated acropetally. Lateral flowers were formed in the bud break (07), before initiation of petals. In advanced budburst stage (09) stamen primordia appear almost immediately after petal initiation, as two whorls in 'Hayward' and as three whorls in the Tomuri cultivar. Stigma initiated in the open cluster stage (10) in Hayward cultivar about 24-25 days after bud swell stage. The process of differentiation of buds and reproductive organs in the second year was the same as the first year with the exception that differentiation began earlier than that in the first year. Climatic conditions were affected flower development and in the second year primordia differentiation began earlier two days in Tomuri and six days in Hayward than those in the first year. The advanced budburst stage (09) in Tomuri 9 days and in the Hayward 10 days was occurred earlier than that in the first year. Unlike other tree fruits, flower induction in the kiwifruit occurred about 6 months before flower initiation. Flower primordia differentiation initiated shortly before bud break stage and approximately two months before full bloom. Flower initiation and differentiation time may be partly estimated with external changes of buds development. According to cultivar, chilling and heat requirements and climatic conditions during the research, flower initiation and differentiation period have fluctuation. A reason for the difference between the development stages and different varieties can be caused by the chilling and heat requirements. The more heat requirement, the longer reproductive meristem differentiation period.
Conclusion: An understanding of the flower initiation and development is very important for the research and management of fruit trees. A knowing of flower initiation and differentiation can be developed corrective vineyard management and practices in crisis period and prepared breeding programs. Tomuri initiated and developed their floral organs earlier than those in Hayward. Different external changes in the bud may be partly used to estimate of flower development status. The results showed that flower initiation and differentiation in buds coincided with the beginning of development and elongation of bud in the early of spring.
Mahshid Ghfouri; Ali Soleimani; Vali Rabiei; Roghayeh Hemmati
Abstract
Introduction: Due to high quality, Iran pomegranate is quite competitive compared to other countries is unrivaled among agricultural products and has great economic importance. Using essential oil is a new idea to reduce postharvest losses and increase the horticultural crop storage life and control ...
Read More
Introduction: Due to high quality, Iran pomegranate is quite competitive compared to other countries is unrivaled among agricultural products and has great economic importance. Using essential oil is a new idea to reduce postharvest losses and increase the horticultural crop storage life and control of fungal infection. In this context, a factorial experiment based on completely randomized design was conducted to study the postharvest spraying of thyme essential oil on storage life and qualitative characteristics of pomegranate fruit (cv. Tarom red skin)
Materials and Methods: Pomegranate fruit (cv. Tarom red skin) was prepared and transferred to University of Zanjan, Horticulture postharvest physiology lab. Treatments were included essential oil of thyme at four levels (0, 500, 1000, 1500 mg/l) and the cold time storage (6 °C and 85% of relative humidity) at three levels (one, two and three months (by four replications. In the first experiment, 180 normal pomegranate fruits were treated with thyme essential oil. In the second experiment, fruits were infected with spores of the fungus Aspergillus niger and then treated with essential oil. During experiment, total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, pH, anthocyanin, electrolyte leakage, chilling injury, weight loss and fungal decay were evaluated. Fruit juice TSS was determined with a hand-refractometer at room temperature. TA was determined by titration an aliquot (20 mL) of the juice with 0.1 N NaOH and the results were expressed as a percentage of citric acid. The maturity index (TSS/TA ratio) was evaluated as the TSS/TA ratio. Fruit juice pH was measured using a pH meter. Anthocyanin was performed to method Fuleki & Francis. Electrolyte leakage was measured according to McCollum & McDonald method. Weight loss was measured according to Ershadi method. Chilling injury was measured by Wang method. Decay was visually evaluated and expressed as percentage. An analysis of variance was used to analyze difference between treatments and the Duncan test was applied for mean separation at p
Behrooz Golein; Vali Rabiei; Faezeh Mirabbasi; Reza Fifaei; Mohammad Fazel Halaji Sani
Abstract
Introduction: Citrus (L.) is a large genus that covers several major cultivatedspecies, including Citrussinensis (sweet orange), C.reticulata (tangerine and mandarin), C. limon (lemon), C.grandis (pummelo), and C. paradisi (grapefruit).Citrus is one of the world’s important fruit crops and grown inmost ...
Read More
Introduction: Citrus (L.) is a large genus that covers several major cultivatedspecies, including Citrussinensis (sweet orange), C.reticulata (tangerine and mandarin), C. limon (lemon), C.grandis (pummelo), and C. paradisi (grapefruit).Citrus is one of the world’s important fruit crops and grown inmost areas with suitable climates between latitude 35◦N–35◦S. InIran, citrus industry is of paramount importance. Citrus species have been classified as salt-sensitive crops, although their relative tolerance can be influenced by climate, fertilization, soil type, irrigation method and rootstock. Citrus rootstocks differ in their ability to exclude Cl−and/or Na+from the scion. Many authors have contrasted the relative abilities of rootstocks to restrict movement of salts to the scions. The rootstocks Cleopatra mandarin (C. reshni), Rangpur lime (C. limonia) and Severiniabuxifolia (Poir) Tenore were relatively effective in restricting Cl−transport to scions, whereas the rootstocks Swingle citrumelo and Carrizo citrange were found to be less restrictive. Although the mechanism by which some rootstocks reduce concentrations of ions in the scion is still unknown, it seems to depend on the vigor of the scion and on water requirements. There are a number of reports demonstrating that both scion and rootstock may influence Cl−accumulation in leaves. Several papers reported that accumulation of Na+ in shoots seemed to be more dependent on rootstock–scion combinations. Since, citrus species are different in salt tolerance and use of tolerant rootstocks can decrease salinity damages, sothis study was conducted to identify tolerant genotypes among unknown types from the Kotra Citrus Research Station, Citrus and Sub-Tropical Fruits Research Center (Ramsar).
Materials and Methods: The experiment was –arrangedin afactorial, based on completely randomized design in three replications with two plantsin each experimental unit in Iran Citrus Research Institute.Treatment included 10 citrus natural genotypes along with two varieties of Cleopatra mandarin (tolerant plant) and Swinglecitrumelo (sensitive plant) with six-month old and four salinity levels of sodium chloride: 0(control), 2, 4 and 6 dsm-1, for 16 weeks in the greenhouse condition. Effect of salinity on fresh and dry weight of shoot and root, relative water content (using upper leaves), stomatal density (with counting of stomata using microscope), concentration ofCl (with titration method of silver nitrate) and Na (by flame photometry) in roots and leaves, content of total chlorophyll (using acetone 80%), proline (spectrophotometry at wavelength of 520 nm), lipid peroxidation (spectrophotometry at wavelength of 532 nm) and activity of peroxidase enzyme (spectrophotometry at wavelength of 470 nm)were investigated. Data analysis was done by SAS 9.1 software.
Results and Discussion: The results indicated that, the interaction of genotypes and salinity levels hadnot significant difference in relative water content, stomatal density and Na+concentration - in roots but, other traits except total chlorophyll content which was significant at 5% level, were significant at 1% level. Shoot fresh and dry weight of genotypes No. 4 and 6 were significantly (P
Sonia Jamali; Vali Rabiei; Javad Fattahi Moghadam
Abstract
The effects of coatingtreatments (waxand plasticbags) combined with methylsalicylate on the fruit quality and chilling injury of Moro blood orange were studied during storage. Treated fruits were kept in storage for 80 days at 5 oC and 90-95% relative humidity. Some characteristics such as pulp and skin ...
Read More
The effects of coatingtreatments (waxand plasticbags) combined with methylsalicylate on the fruit quality and chilling injury of Moro blood orange were studied during storage. Treated fruits were kept in storage for 80 days at 5 oC and 90-95% relative humidity. Some characteristics such as pulp and skin total phenolics, antioxidant capacity, total anthocyanin, lipid peroxidation, and the chilling injure index were assessed at 0, 20, 40, 60, 80 days after storage. Total phenolics in the skin and pulp were reduced during storage. Peel Total phenol of wax coating treatment with methyl salicylate (0.26 mg) had the lowest reduction after 80 days storage. Pulp total phenolic of fruits in pair plastic bag fruits (0.25 mg) had minimal changes during storage. Coating combined with methyl salicylate to retain moisture and delay the aging process reduced chilling injury. Generally, the amount of pulp total anthocyanins and antioxidant capacity increased during storage. The antioxidant capacity of the wax coating fruits, pair plastic bag fruits and pair plastic bag fruits combined with methyl salicylate was 42.98, 37.46 and 37.42, respectively. Wax combined with methyl salicylate (0.18 mM) and pair plastic bag fruits (0.17 mM) has the lowest lipid peroxidation during storage. Individual plastic bag with methyl salicylate (44.54%) had the least amount and methyl salicylate (77.41%) had most ion leakage. The best treatments were individual fruit packing combined with methyl salicylate and wax coating combined with methyl salicylate that reduced the incidence of fruit chilling injury to one percent. Ion leakage, lipid peroxidation and chilling injury increased during cold storage. Treated fruit with wax combined with methyl salicylate and individually and pair packed fruit combined with methyl salicylate had the best visual fruit quality. Combined treatments had more effects than individual treatments alone.
Vali Rabiei; Soheila Rahmani
Abstract
The effect of hot water treatments [45°C for five minutes, 55°C for 25 seconds and non-treated(control)], salicylic acid in three levels (0, 1 and 2 mM) and calcium chloride in two levels (2% and 4%) on quantitative and qualitative parameters and storage life of pomegranate cv. Meykhosh were investigated. ...
Read More
The effect of hot water treatments [45°C for five minutes, 55°C for 25 seconds and non-treated(control)], salicylic acid in three levels (0, 1 and 2 mM) and calcium chloride in two levels (2% and 4%) on quantitative and qualitative parameters and storage life of pomegranate cv. Meykhosh were investigated. Experiment was conducted as a factorial based on completely randomized design with three replications. Fruits were stored for four months and sampling was performed at the end of storage. Results showed calcium chloride treatment prevents weight loss and fruit softening in comparison with control. Salicylic acid had a significant effect in preventing of TSS content increasing so thatSalicylic acid with 2 mM concentration was more effective than 1 mM, also fruits treated with salicylic acid had less reduction in TA content. Fruits treated with hot water had weight loss percentage less than control fruits and hot water treatment at 45 °C was more effective than 55 °C. Also the use of hot water and salicylic acid treatment increased PAL activity in comparisonwith the control. Survey of triple treatments interaction showed that hot water treatment at45 °C, 2 mM of Salicylic acid and 4% calcium chloride had the best result in pomegranate fruits storage life.