Alireza Pirzad; Reza Darvishzadeh; Abbas Hassani
Abstract
Introduction: Cumin, sometimes spelled cummin (Cuminum cyminum L.; Apiaceae), also known as Zeera is native from the East Mediterranean to India. Its seeds are used in the cuisines of many different cultures, and it is also used as a medicinal plant, serving as a digestant, as well as being used to treat ...
Read More
Introduction: Cumin, sometimes spelled cummin (Cuminum cyminum L.; Apiaceae), also known as Zeera is native from the East Mediterranean to India. Its seeds are used in the cuisines of many different cultures, and it is also used as a medicinal plant, serving as a digestant, as well as being used to treat anemia and the common cold. Cumin is a drought tolerant plant, has a short growth season of 100 – 120 days, with optimum growth temperature ranges between 25°C and 30 °C. Drought is one of the most important environmental factors that influences seed yield of crop plants in arid and semi-arid regions,through physiological response of plant. To reduce drought stress damages, some synthetic materials like hydroplus superabsorbent polymers, highly hydrophilic due to low cross-links in their structure, can be used to save soil moisture. Thus, superabsorbent polymer may have great potential in restoration and reclamation of soil and storing water available for plant growth and production.
Materials and Methods: To evaluate accumulation of photosynthetic pigments and seed yield of cumin, a factorial experiment was conducted based on randomized complete blocks design with three replications at the Research Farm of Urmia University (latitude 37.53° N, 45.08° E, and 1320 m above sea level).- The soil texture of experimental site was clay loam (28% silt, 32% clay, 40% sand) with 22.5% field capacity, 1.54 g/cm3 soil density, and pH 7.6. Treatments were four irrigation regimes (irrigation after 50, 100, 150 and 200 mm of evaporation from class A pan) and different amounts of superabsorbent polymer (0, 60, 120, 180, 240 and 300 kg/ha). To measure the chlorophyll content (Chlorophyll a, b, and total chlorophyll), 0.25 g of grounded leaves were adjusted to 25 ml by distilled water, and 0.5 ml of this solute was mixed with 4.5 ml acetone 80%. The upper zone of centrifuged solution was taken for spectrophotometery at 645nm and 663 nm wavelengths. To measure the yield of cumin seeds, 2 m2 of each plot was harvested and immediately were dried in the shade and at a temperature of 25 ° C. Essential oil, 25 g of powdered seeds in a one-liter flask, was extracted (W/W) by the Clevenger method (Hydro distillation) for 3 hours.
Results and Discussion: Analysis of variance showed the significant interaction between the superabsorbent polymer and irrigation on the amount of leaf chlorophyll a, chlorophyll b, total chlorophyll, seed yield, percentage and yield of essential oil. This implies a different physiological response of cumin plant in terms of adding different amounts of superabsorbent and irrigation. Means comparison indicated that the highest concentration of chlorophyll a (0.266 mg/l) and total chlorophyll (0.518 mg/l) were obtained from plants irrigated after 50 mm of evaporation without polymer application. The maximum (0.259 mg/l) and minimum (0.028 mg/l) leaf chlorophyll b belonged to irrigation after 200 mm of evaporation using 60 and 240 kg/ha polymer, respectively. The highest yield of seed (1226 kg/ha) and essential oil (36.5 kg/ha) were obtained from well-watered plants (irrigation after 50 mm of evaporation) and 60 kg/ha of polymer. Increasing irrigation intervals from 50 to 200 (50, 100, 150 and 200) mm of evaporation, need 120, 180 and 120 kg/ha polymer correspondingly for production of optimal yield of cumin. Essential oil of cumin plants was gradually and significantly enhanced by increasing irrigation distance, up to 150 mm of evaporation from pan, (with this particle)follow down by severe stress. Like seed yield the lowest yield of essential oil (0.9 kg/ha) belonged to plants irrigated after 50 mm of evaporation using 120 kg/ha superabsorbent (less than irrigation after 200 mm of evaporation). In general, in the case of well-watered plants, irrigation after 50 mm of evaporation with a small amount of superabsorbent (60 kg/ha) produced maximum seed yield and oil. However, if there is no access to water and increasing irrigation intervals twice (irrigation after 100 mm of evaporation from pan) for maximum performance requires the use of 120 kg/ha polymersince the essential oil of irrigation after 200 mm of evaporation is very low. But, if we use higher amounts of superabsorbent (300 kg/ha) more than double the yield of essential oil was obtained from this irrigation level.
Conclusion: A significant interaction between irrigation and superabsorbent, recommended a certain amount of polymer used as the optimum level for each irrigation regime so that the proper yield of essential oil was affected by optimal superabsorbent quantities of chlorophyll, seed yield and essential oil content. In conclusion, the suitable amounts of superabsorbent polymer were different for each irrigation regime,thereforeit is recommendedless than 120 kg/ha for control (non-stress condition) and moderate drought stress- and - 300 kg/ha for severe stress to produce essential oil of cumin plants, respectively.
Shirin Nateghi; Alireza Pirzad; Reza Darvishzadeh
Abstract
The higher levels of essential elements in soil may be caused in optimum yields and crop quality. So it seems to be necessary to examine different levels of nutrients like Fe and Zn on plants and their productivity. To evaluate effects of iron and zinc application on yield and yield components of Pimpinella ...
Read More
The higher levels of essential elements in soil may be caused in optimum yields and crop quality. So it seems to be necessary to examine different levels of nutrients like Fe and Zn on plants and their productivity. To evaluate effects of iron and zinc application on yield and yield components of Pimpinella anisum an experiment was conducted at the research farm of Urmia University in 2009. Treatments, iron application (0, 0.2, 0.4 and 0.6%) and zinc (0, 0.2, 0.4 and 0.6%), were arranged as factorial based on randomized complete block design with 3 replications. Results showed the significant effect of interaction between iron and zinc on the number of seed in per plant,1000 seed weight, biomass yield, seed yield and harvest index (HI). The maximum value of the 1000 seed weight (2.22 g) was obtained from 0% of Fe and 0.2% of Zn, whereas the minimum value of the 1000 seed weight (1.92 g) belonged to 2% of iron and 0% of zinc. The highest number of seed per plant (762), maximum value of biomass yield (2652 kg/ha) and highest of seed yield (1372 kg/ha) were obtained from 0.6 and 0.4 percent of Fe and Zn and the lowest number of seed per plant (272), maximum value of biomass yield (716 kg/ha) and highest of seed yield (470 kg/ha) were obtained from 0 and 0.6 percent of Fe and Zn, respectively. The highest HI (66.18) was obtained at control treatment and the lowest one (46.67) at both 0.4 percent of Fe and Zn. The essential oil percent increase in average values of Fe and Zn spraying. But accumulation of Fe and Zn were the maximum in higher levels of spraying.
Esmaeil Rezaei Chiyaneh; Saeid Zehtab Salmasi; Alireza Pirzad; Amir Rahimi
Abstract
Although micronutrients effect on growth and yield of different plants has been intensively investigated, but there is limited information on its effect on grain yield and seed oil content of pot marigold) Calendula officinalis L.). In order to investigate the effects of micronutrients (Fe, Zn and Mn) ...
Read More
Although micronutrients effect on growth and yield of different plants has been intensively investigated, but there is limited information on its effect on grain yield and seed oil content of pot marigold) Calendula officinalis L.). In order to investigate the effects of micronutrients (Fe, Zn and Mn) spraying on yield and yield components and seed oil of pot marigold, a field experiment was conducted based on randomized complete block design with three replications at the Research Farm of Payame Noor University of Nagadeh in 2010. Treatments included Fe, Zn, Mn, mixed solutions of these elements (Fe+Zn, Fe+Mn, Zn+Mn, Fe+Zn+Mn) and control (water). Treatments were applied in 2 g/litter twice at stem elongation and early flowering stages. Different traits such as plant height, number of capitol per plant, number seed per capitol, thousand seed weight, biological yield, seed yield, seed oil percentage and oil Yield were recorded. The results showed that foliar application of micronutrients had significant effects on all of these traits. Yield components, seed yield, oil percentage and yield were enhanced by foliar application, compared with control (untreated plants). The maximum number seed per capitol, thousand seed weight and biological yield were relevant to Fe treatment. The highest numbers of capitol per plant and seed yield (643.33 kg.ha-1) were relevant to Zn+Fe treatment and the maximum oil yield (124.20 kg.ha-1) was produced by Zn+ Fe+ Mn treatment. Seed yield and oil yield increased by 31.27% and 44.18% yields more than control, respectively. It can be concluded that, foliar application of micronutrients had positive effects to obtain high yield and oil of pot marigold.
Saeideh Rahimzadeh; Yousef Sohrabi; Gholamreza Heidari; Alireza Pirzad
Abstract
Abstract
In order to evaluate the effects of biofertilizers on yield and morphological characters in dragonhead, an experiment based on randomized complete block design with four replications was conducted in 2008. Treatments were nitroxin, biological phosphorus, biosulfur, nitroxin+biological phosphorus, ...
Read More
Abstract
In order to evaluate the effects of biofertilizers on yield and morphological characters in dragonhead, an experiment based on randomized complete block design with four replications was conducted in 2008. Treatments were nitroxin, biological phosphorus, biosulfur, nitroxin+biological phosphorus, biological phosphorus+ biosulfur, nitroxin+ biosulfur, nitroxin+biological phosphorus+ biosulfur, chemical origin of nitrogen+ phosphorus+ potassium and control. The results showed the effects of treatments on stem diameter, the number of flowers, the number of branches and leaves, plant dry weight and biological yield of dragonhead were significant. The highest number of branches (10) observed in nitroxin+biological phosphorus treatment. The greatest number of flowers (43) and leaves (2475), stem diameter (0.76), dry weight (28.8 gr), and biological yield (6150 kg/ha) were obtained from chemical fertilizer, althought there was no significant difference between nitroxin and chemical fertilizer. It seems that application of Nitroxin could result an optimum yield of dragonhead compared to NPK, without harmful effects assigned to chemical fertilizers due to environmental and health issues.
Keywords: Dracocephalum moldavica, Biosulfur, Biological phosphorus, Nitroxin, Dry weight