Medicinal Plants
Ahmad Balandary; Majid Azizi; Mahsa Khodabandeh
Abstract
Introduction
Barberries are small fruits with appealing colors and tastes, and have a great diversity in Iran. There are numerous indigenous barberry genotypes in Iran, which have remarkable therapeutical and nutritional attributes. Seedless barberry is the most famous genotype which fruits are ...
Read More
Introduction
Barberries are small fruits with appealing colors and tastes, and have a great diversity in Iran. There are numerous indigenous barberry genotypes in Iran, which have remarkable therapeutical and nutritional attributes. Seedless barberry is the most famous genotype which fruits are rich in phytochemicals. Although Iran is one of the main habitats of the barberry species and hybrids and the seedless cultivar is considered as an exclusive crop for our country, a few products are being produced from such valuable crop in food industries.
Materials and Methods
In present study, fruit biochemical properties of the twelve barberry genotypes (including one seedless genotype and eleven seedy genotypes: 2-2, 4-1, 5-1, 5-2, 5-3, 8-3, 10-1, 11-1, 12-1, 13-1 and 14-2) of the barberry collection located in Research Institute of Food Science and Technology of Mashhad, were evaluated based on the fruit appearance. For this purpose, fruits were harvested in 2015 harvest time and divided into two parts. One part was dried in room temperature. Then dried fruits were kept in cool and dark place until analyses. The other part was kept fresh for some measurements including TSS, TA, TSS/TA and pH. Before all tests, fruits were deseeded and the properties of the pulp were determined. Biochemical properties included total soluble solid (TSS), titratable acidity (TA), TSS/TA ratio, fruit juice pH, total phenol content, total flavonoid content, total anthocyanin content, protein content, crude fiber, total sugar and minerals including Iron (Fe), Magnesium (Mg), Zinc (Zn) and Copper (Cu). Data analysis was performed based on completely randomized design by Minitab software version 16 using analysis of variance (ANOVA) and differences among means were determined for significance at p≤0.05 using Tukey’s range test.
Results and Discussion
Results showed significant variation in biochemical properties of genotypes. Based on the results, genotype code #13-1 had the highest content of titratable acidity (5.61 g malic acid per 100 g fresh fruit weight) and the highest soluble solids content (5.5 °Brix). The highest amount of crude fiber (54.96%), Fe (138.49 ppm), Mg (1426.39 ppm) was related to genotype code #10-1 and the highest amount of anthocyanin (452.60 mg/100g), protein (4.26%) and Cu (6.80 ppm) belonged to genotype code #14-2. Two genotypes “Bidaneh” and code #5-3 displayed a distinctive content of total carbohydrates with respectively 59.61% and 25.67%. Furthermore, genotype code #11-1 showed the highest amount of Zn (18.85 ppm) among all.
Conclusion
Up to now, barberry mostly has been consumed as a food seasoning and garnish. All data of this study suggest that barberry, as a functional food, can partially cover the body's daily requirements. Therefore, a comprehensive study should be performed to determine all the capacities and uses associated with each genotype. Overall, genotype code #14-2 can be introduced as the best genotype in terms of flavonoid, anthocyanin, protein and copper content of all the evaluated genotypes. Considering its high content of anthocyanin, producing an edible colorant powder is possible. In conclusion, considering the great diversity, fruits of indigenous barberry genotypes can provide a rich source of minerals and phytochemicals for food purposes. Furthermore, achieving applied science in making products from such indigenous crop could lead into investments and economic development in regions in which barberry is cultivated.
Medicinal Plants
Mahsa Khodabandeh; Majid Azizi; Ahmad Balandary; Hossein Arouiee
Abstract
Introduction
Barberries are a broad class of spiny evergreen or deciduous shrubs belonging to the Berberidaceae family. They are of great importance due to their different parts' nutritional and medicinal properties and their ornamental applications. Genus Berberis, the biggest genus ...
Read More
Introduction
Barberries are a broad class of spiny evergreen or deciduous shrubs belonging to the Berberidaceae family. They are of great importance due to their different parts' nutritional and medicinal properties and their ornamental applications. Genus Berberis, the biggest genus in Berberidaceae, includes more than 660 species. Barberry grows in Asia and Europe and has been used extensively as a medicinal plant in traditional medicine. In Iranian traditional medicine, several properties, such as antibacterial, antipyretic, antipruritic and antiarrhythmic, have been reported with unknown mechanisms of action. Incredible structural diversity among barberries' active components makes them a valuable source of novel therapeutic compounds. Seedless barberry (Berberis integerrima 'Asperma') is one of Iran's valuable indigenous medicinal plants. Common asexual propagation of this plant over the years and consequently low genetic diversity in populations of the seedless barberry restricts selection outcomes in breeding programs. Utilizing the indigenous wild genotypes of the barberry genus, which are easily able to cross-pollinate, is one of the best methods to increase genetic diversity. Accordingly, several wild seedy barberry genotypes were identified from all over Iran, collected and established in a collection in Mashhad; then, 16 genotypes were selected and their physical properties were studied.
Materials and Methods
In this study, ripe fruits of sixteen unique genotypes (i.e., Iranian seedless barberry and fifteen seedy genotypes) were harvested in October- November 2015 and kept in a refrigerator in order to measure some of their physical properties in fresh fruits (berry dimension, 100-berry weight, juice content and color indices). For other properties, fruits were dried at room temperature. Fruit cluster length was measured by means of a ruler, the number of berries/cluster and the number of set/aborted seeds in berry by counting, berry dimensions by a digital caliper, weight of fresh and dried 100-berry, percentage of pulp and seed as well as fruit juice content by a scale with 0.001 accuracy. Moisture content was determined using an oven with 75 ºC temperature for 48 hours. Color indices, including L*, a* and b*, were measured using a portable colorimeter (Konica Minolta Chroma Meters CR-410). This study was performed using a completely randomized design with three replications. Data were analyzed by Minitab software version 16 using analysis of variance (ANOVA), and differences among means were determined for significance at p<0.05 using the Bonferroni test.
Results and Discussion
The results indicated significant differences among genotypes. Based on the results, cluster length ranged between 1.67cm (code 5-3) and 6.29 cm (code 10-1); moisture content was between 8.20% and 11.84% in genotypes 8-3 and 13-2, respectively. The fruit juice content range of the studied genotypes was between 51.22% and 71.87%. Genotype 2-1 had the highest dimension values and the highest 100-berry fresh weight (30.72g) and dry weight (10.00g) fruits. The lowest weights of 100-berry were related to 14-1 and seedless barberry. Genotypes 5-2 had the highest pulp percentage (98.17%) and the lowest seed percentage (1.50%) and 10-1 had the lowest pulp percentage (51.93%) and the highest seed percentage (48.07%). The highest number of set seeds (1.73) and the lowest number of aborted seeds (zero) were found in (10-1) and (14-2), respectively. Based on the results, seedless barberry had the lowest number of set seeds (0.00) and the highest number of aborted seeds (3.27). Regarding fruit color indices, genotypes showed significant variability from orange to brown and dark blue. Color indices L*, a* and b* ranged (from 22.83 to 38.13), (2.31 to 37.76) and (1.18 to 2.28), respectively.
Conclusion
In conclusion, it can be said that all genotypes have considerable variability in fruit traits (color, fruit dimensions, pulp/seed percentage, moisture content, etc.). Based on the result of this study, genotype 5-2 was the most similar genotype to seedless barberry. The seedless barberry populations have low genetic diversity due to asexual propagation through suckers over many years. Indigenous genotypes can be a valuable genetic resource for future breeding programs to improve the quantitative and qualitative characteristics of seedless barberry and introduce new cultivars of seedless barberry with different colors and consequently different nutritional- medicinal properties.
Farima Doaei; Parviz Rezvani Moghaddam; Reza Ghorbani; Ahmad Balandary
Abstract
Introduction: In order to response to greater demand for wild medicinal plants consumption, it has been recommended that wild medicinal plants can be brought into cultivation systems. Cichorium pumilum Jacq. is an annual species of Asteraceae family, that has a long history of herbal use and is especially ...
Read More
Introduction: In order to response to greater demand for wild medicinal plants consumption, it has been recommended that wild medicinal plants can be brought into cultivation systems. Cichorium pumilum Jacq. is an annual species of Asteraceae family, that has a long history of herbal use and is especially of great value for its tonic effects upon the liver and digestive tract. The root and the leaves of chicory are digestive, hypoglycemic, diuretic, laxative and tonic. Using chemical fertilizers can be easily lost from soils through fixation, leaching or gas emission that can lead to reduced fertilizer efficiency. The applications of organic fertilizers such as compost and vermicompost can be considered as a good management practice to increase cropping system sustainability, reducing soil erosion and improving soil physical, chemical and biological properties. Soil microorganisms have a significant role in regulating the dynamics of organic matter breakdown and the availability of plant nutrients such as nitrogen, phosphate and sulfur.
Materials and Methods: For evaluating the effects of organic, mineral and biological fertilizers on seed yield and yield components of dwarf chicory (Cichorium pumilum Jacq.), a field experiment was conducted at the Agricultural Research Station, the Ferdowsi University of Mashhad (36016/ N, 59036/ E, elevation 985 m) during growing season of 2011-2012. The experimental layout was factorial based on randomized complete block design with four replications. The experimental treatments were all combination of organic and chemical fertilizers (compost 4 t/ha, vermicompost 4 t/ha, urea fertilizer 130 kg/ha and control) and biological fertilizer (biosulfur biofertilizer + pure sulfur 100 kg/ ha and control). Before conducting the experiment, soil sample were taken from the depth of 0-30 cm, and physical and chemical characteristics of the soil and also used compost and vermicompost were determined. All fertilizer treatments were added to the soil and mixed well with the soil before sowing. In order to avoid leaching, all urea fertilizer was divided to two parts and these were used in two dates during the growth period. Cichorium pumilum Jacq seeds were hand sown in 2.5 ×4 m plots in five rows and with plant density 20 plants m−2. Before harvesting the grain, five plants were randomly selected in each plot from 2500 cm2 (50×50cm) and their characteristics and traits such as plant height, number of tiller per plant, number of branch per plant, number of inflorescence per plant, number of seed per inflorescence, number of seed per plant and seed weight were determined. For statistical analysis, analysis of variance (ANOVA) and Duncan multiple range test at 0.05 level were performed using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA).
Results and Discussion: The Results indicated that studied factors and their interactions had not significant effect on morphological traits (plant height, number of tiller per plant, number of branch per plant) and on yield components of seed such as: number of seed per inflorescence, 1000-seed weight, seed weight per plant, seed yield and harvest index (HI). The results showed that organic and chemical fertilizers had significant effect on number of inflorescence per plant, number of seed per plant, biological yield (p< 0.05).The highest number of inflorescence per plant, number of seed per plant and seed weight per plant were observed in chemical fertilizer + biosulfur biofertilizer treatment. The highest seed yield (1489 kg.ha-1) obtained from compost + biosulfur biofertilizer treatment. Chemical fertilizer + biosulfur biofertilizer treatment (7576 kg.ha-1) produced the highest biological yield. It seems that because of high solubility of chemical fertilizer, nutrients are immediately available to the plants therefore, plants can use nutrients of chemical fertilizer faster than other fertilizers. Biofertilizer and organic fertilizer can improve soil properties and also through nutrient supply, improves plant growth.
Conclusion: In this study, it seems that the morphological traits (plant height, number of tiller and number of branches per plant) and yield components such as the number of seeds per inflorescence and seed weight were influenced by genetic characteristics and fertilizer treatments had little effect on mentioned traits and the plant was able with nutrient available in soil, overcome its needs. Overall in this study, results showed that the use of compost combination with biosulfur biofertilizer had positive effect on studied traits of dwarf chicory and use of them can be an effective step towards sustainable production and replacement use of chemical fertilizers.
Raheleh Naghibi; Parviz Rezvani Moghaddam; Ahmad Balandary; Reza Ghorbani
Abstract
Introduction: In recent years many farmers in Iran interested in to cultivate and produce different medicinal plants which are so important in traditional agriculture in Iran. In order to reduce the environmental impacts of using chemical inputs and also to increase the quality of plant secondary metabolite ...
Read More
Introduction: In recent years many farmers in Iran interested in to cultivate and produce different medicinal plants which are so important in traditional agriculture in Iran. In order to reduce the environmental impacts of using chemical inputs and also to increase the quality of plant secondary metabolite components, the emphasis is on sustainable agriculture base on using of organic and biological fertilizer. Dwarf chicory (Cichorium pumilum Jacq.) is an annual plant from Asteraceae family. Dwarf chicory is classified by jacq as subspecies of the cultivated species Cichorium endeva which consumed for healing a variety of diseases such as bacterial infection, poisoning and rheumatism. The use of organic fertilizer in the form of humic acid and fulvic acid play an important role in sustainable agriculture. Humic substances can be added to the soil for improvement the crop yield. A benefit of humic acid due to its ability to complex metal ions and form aqueous complexes with micronutrients and also may form an enzymatically active complex, which can be carry on reactions that are usually assigned to the metabolic activity of living microorganisms. In additional of using organic fertilizers, the biological fertilizer like mycorrhiza fungi is a good approach in agriculture. Mycorrhizal fungi have been used to enhance the plant growth and yield of medicinal crops and to help maintain good soil health and fertility that contributes to a greater extent to a sustainable yield and good quality of the products. The present study was conducted to evaluate the effects of organic fertilizers and mycorrhizae inoculation on quantitative and qualitative characteristics of dwarf chicory (Cichorium pumilum Jacq.) in different cuttings.
Materials and Methods: The experiment was carried out in a factorial layout based on randomized complete block design with three replications at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad (59°28 E and 36°15 N ) in 2012-2013 growing season. The experimental treatments were all combination of organic fertilizers in four levels (cow manure, humic acid, fulvic acid and control) and three levels of Mycorrhiza inoculation (Glomus mosseae, Glomus intraradices and no inoculation) and The collected data were analyzed as split- plot in time based on randomized complete block design (due to having two cuttings during growing season) compared. The 12 fertilizer treatments and two cuts were considered as main and sub plots, respectively. The plots were 2.5*5 m (12.5 m2). The soil of the experimental field was silty loam with pH 8.09, contains total N (0.08 %), available P (10.25 ppm), and available K (286 ppm) with an EC of 1.26 dsm−1. The parameters measured were such as: leaf weight per plant, stem weight per plant, leaf/stem ratio, the leaf area index, fresh yield, dry matter yield and the poly phenol content. The poly phenol content was determined based on Wojdylo et al. (2007) method. The results were analyzed using SAS statistical program and MSTAT-C. The mean comparisons were performed using least significant difference (LSD) test.
Results and Discussion: The results showed that the highest (4544 kg.ha-1) and the lowest dry matter (1739 kg.ha-1) yield were obtained in second and first cut, respectively. The results indicated that inoculation with mycorrhizal species increased the leaf area index, dry matter yield and leaf weight per plant compared with control treatment. However, there was no significant difference between G. mosseae and G. intraradices in terms of former mentioned criteria. The results showed that using organic fertilizers improved leaf area index, dry matter yield and leaf weight per plant. The highest dry matter yield (3470 kg/ha), leaf area index (1.01), stem weight per plant (11.50 g) and leaf weight per plant (0.72 g) were obtained in humic acid treatment. Studied treatments and also different cutting had no significant effect on poly phenols contents of leaves. In generally, our results showed that application of biological and organic fertilizers improved the most of studied traits of dwarf chicory and G.mosseae + humic acid treatment was the best.
Conclusion: In this paper we have shown that yield contributing characters were significantly influenced by different treatment combinations of humic acid and mycorrhizal fungi and became maximum when humic acid and Glomus mossae were applied. In order to minimize contamination of the environment and sustainable agriculture, using biological and organic fertilizers can lead to reduction of chemical fertilizers application in agro ecosystems.