Pomology
Masud Fattahi; Abdolrahman Mohammadkhani
Abstract
Introduction
UCB-1 hybrid rootstock is propagated from the seed of a controlled cross between a P. atlantica female and a P. integerrima male. Clonal propagation of this rootstock is also necessary since it produces identical genotypes. UCB1 has recently been introduced in Iran. However, little ...
Read More
Introduction
UCB-1 hybrid rootstock is propagated from the seed of a controlled cross between a P. atlantica female and a P. integerrima male. Clonal propagation of this rootstock is also necessary since it produces identical genotypes. UCB1 has recently been introduced in Iran. However, little research has been done on this subject. Water stress is one of the most important environmental stresses and occurs for several reasons, including low rainfall, high and low temperatures, salinity, and high intensity of light, among others. Drought stress is a multidimensional stress and causes changes in the physiological, morphological, biochemical, and molecular traits in plants. Proline is also found widely in plants and accumulates in large quantities in response to environmental stresses such as drought. It is the essential amino acids that accumulate in different tissues of the plant, especially in the leaves through the effect of water stress, and that the accumulation of it has a function in the regulation of osmosis in the cell as the proline is increased in the cytoplasm to counterbalance effort osmosis cell sap. Proline is an indicator of water stress tolerance and its increase in the leaf proof that the plant suffered drought stress, also is the way the plant tolerance to drought stress.
Materials and Methods
A pot experiment was conducted, to investigate the effectiveness of foliar applied proline in mitigating the concurrent effects of drought stresses on UCB1 rootstock, at greenhouse of Faculty of Agriculture, University of Shahrekord. Experiment was carried out in a completely randomized design with split arrangement having three replications. Chl. and carotenoid contents were determined according to Lichtenthaler (1987). Leaf discs were obtained from expanded leaves of each pot in the morning. The leaf discs were weighed immediately to obtain the fresh weight (FW), and submerged in distilled water for 4 h at 4◦C in dark condition and then weighed to prepare turgor weight (TW). The leaves were dried in a forced-air oven at 70◦C for 24 h, and the dry weight (DW) was recorded. The RWC of samples was calculated using the following equation (Bastam et al., 2012): RWC = [(FW–DW)/(TW–DW)] × 100
Levels of glycine betaine were quantified as described previously by Arakawa et al. (1990). To determine the free-proline concentration, leaves were homogenized in 5 ml of ethanol at 95%. Proline concentration was calculated with a standard curve and expressed as µg g−1fresh mass (Paquin and Lechasseur, 1979).
Results and Discussion
The UCB1 proximate analysis in the present study depicted that imposition of drought stress increased the leaf and root proline content and electrolyte leakage. Exogenous application of proline as foliar spray significantly increased the moisture content of leaf and root, RWC, Chl a and total chlorophyll. Exogenous proline application upregulated leaf and root proline contents and decreased the lipid peroxidation (decrease electrolyte leakage), resulting into improvement in chlorophyll contents. 150 mg. l-1 proline application gave maximum alleviation against stress.
Numerous reports depict that the exogenous application of proline as a foliar spray can play an important role in enhancing plant tolerance against drought stress, and our results are consistent with them. This ameliorating effect of exogenously applied proline can take the form of osmoprotection, cryoprotection, or protection against reactive oxygen species.For example, in various plant species growing under stress conditions, exogenously supplied proline provided osmoprotection and facilitated plant growth. Normally, proline accumulation in plants, is in response to drought or salinity stress occurs in the cytosol where it contributes substantially to the cytoplasmic osmotic adjustment. It actively takes part in plant osmotic adjustment under stressful environmental conditions. In addition to its role as an osmolyte for osmotic adjustment, it actively takes part to stabilize subcellular structures, biological membranes, proteins, and scavenge free radicals. It also plays a vital role in buffering cellular redox potential under stressful environmental conditions.
Conclusion
In summary, our results showed that, drought induces a decrease in moisture content, RWC, T Chl and carotenoids and an increase in some osmoregulators (proline, glycine betaine, TSC). The most favorable treatment was 150 mg.l-1 proline foliar spray. 150 mg.l-1 proline application gave maximum alleviation against stress. Foliar application increased the moisture content of leaf and root, as well as increased the Chl a, total, RWC and proline content of leaf and root. It can be suggested that the foliar application of proline (150 mg L-1) used as a plants defense factor against drought stress conditions.
Breeding and Biotechnology of Plant and Flower
Mohammad Esmaeil Naddaf; Ebrahim Ganji Moghadam; Gholmreza Rabiei; Abdolrahman Mohammadkhani
Abstract
Introduction Sweet Cherry (Prunus avium) belongs to the Rosaceae family, which due to vegetative propagation problems, in vitro propagation is recommended to increase mass and disease-free production. Micropropagation has many advantages over other vegetative methods. Although the most suitable ...
Read More
Introduction Sweet Cherry (Prunus avium) belongs to the Rosaceae family, which due to vegetative propagation problems, in vitro propagation is recommended to increase mass and disease-free production. Micropropagation has many advantages over other vegetative methods. Although the most suitable organ that preserves the genetic characteristics of the cultivar is bud meristem, plant regeneration from meristem culture is difficult in many species of woody plants, so micro-grafting is a suitable technique to overcome these problems. The aim of this study was to investigate the effect of scion size and origin of commercial sweet cherry cultivars interact with micrografting on the vegetative rootstocks.Materials and Methods In this study, factorial experiment was used as a test unit in a completely randomized design (CRD) with two factors in five replications and ten seedlings per replication. The first factor was cultivar in seven levels (B: Bing, D: Dovomres, H: Haj Yousefi, P: Pishres, S: Siah- Mashhad, T: Takdaneh, Z: Zard) and the second factor was scion type in four levels (M1R1: 2 mm in vivo explant, M2R1: 5 mm in vivo explant , M1R2: 2 mm in vitro explant and M2R2: 5 mm in vitro explant). To prepare the scion, 1.5 to 2 cm long explants were isolated from shoot tips and then disinfected with 75% ethanol and 20% Sodium hypochlorite. After rinsing with distilled water, the shoot tips with 2 and 5 mm length were extracted for in vivo explants. In vitro explants were obtained from shoo tips that was previously established in MS culture medium with supplement of 1 mg.l-1 of BAP. The meristems were prepared in 2 and 5 mm and used as in vitro explant. 5 cm length in vitro shoots of sweet cherry ‘Gisella 6’ was used as rootstock. Micro-grafting was performed according to the standard method for sweet cherries. Micro-grafted plantlets were transferred to MS medium supplemented with 1 mg.l- l BAP, and kept under low light (100 lux) condition for one week, then transferred to growth chamber at 27.1 °C photoperiods 16/8 hrs light/darkness (1500 lux). In order to induce root, grafted plantlets were transferred to Perlite: MS medium supplement with 1 mg.l- l IBA. After rooting, plants were placed in polyethylene pots containing perlite: peatmoss (1:1) for acclimation. Micro-grafting success indices were recorded in each of the micro-grafted plantlets. The data were analyzed by SAS statistical software (9.1) and the means were compared by Duncan's multiple range test (1 and 5 % of probability levels).Results and Discussion The results showed that in all indices there was a significant difference between scion types and cultivar scion type interactions except grafting time, but there was no difference between cultivars (except longitudinal growth of scion). Among the scion types, the 5 mm in vitro scion (M2R2) had the highest micro-grafting success rate (42%), number of leaves (3.7), longitudinal growth (6.3 cm) and taken grafting time (two days). Finally, in successful micro-grafted plants, ‘Pishres’ cultivar had better results in rooting (32.8%) and ‘Zard’ cultivar in acclimation (3.4%) traits. Probably the presence of leaves led to better nutrient supply and surface contact, so it mostly improved the success of micrografting technique. In this study, micro-grafting success indices were lower than previous reports using seedling rootstocks. This might be due to difficult grafting operations, poor rootstock-scion communication, low physiological activity, and high in vitro oxidase activity. In the type of scion, micro-grafting success rate of 5 mm in vitro scions (include leaf primordia), was better than 2 mm scions (without leaf primordia). These results were consistent with most reports in sweet cherries and other stone fruit that were more successful in micro-grafting using larger in vitro explant.Conclusion Based on our results, it can be concluded that the micro-grafting method in sweet cherry micro-propagation is a fast practical method with high potential for production and regeneration of healthy orchards, which is also possible for other cultivars. In micro-grafting success, in vitro explants are preferable to explants taken directly from in vivo mother trees, and the use of larger explants for scion is recommended due to the presence of leaf primordia in micro-grafting success. However, smaller-size explants are more likely to produce healthy plants.
Masud Fattahi; Abdorahman Mohammadkhani
Abstract
Introduction: Abiotic stresses, in particular drought, not only compromise crop quality and limit yield, but also restrict the geographical range over which crop production is viable. Plant species have evolved a number of physiological and molecular means to cope with adverse environmental conditions. ...
Read More
Introduction: Abiotic stresses, in particular drought, not only compromise crop quality and limit yield, but also restrict the geographical range over which crop production is viable. Plant species have evolved a number of physiological and molecular means to cope with adverse environmental conditions. Grapevine is a perennial crop grown in various areas around the world. It is highly responsive to local environmental conditions and viticultural practices. Abiotic stresses cause extensive losses to agricultural productivity. Grapevine is no exception to the rule and faces several abiotic stresses throughout its lifespan. Drought, salinity, or heavy metals are serious problems in many parts of the world. The potential of AMF to enhance plant tolerance to abiotic stress conditions has long been known, and their use in sustainable agricultural systems will be of tremendous importance for soil quality and crop productivity under severe edapho-climatic conditions. Arbuscular mycorrhizal fungi (AMF), a kind of beneficial soil microorganism, can create a symbiotic association with plant roots forming arbuscular mycorrhizas (AMs), which play a role in the regulation of plant growth. This research was carried out in order to determine the effect of deficit irrigation on morphological characteristics of grapevine ʽAsgariʼ cultivar in greenhouse conditions in 2016.
Materials and Methods: The layout was as a factorial experiment in a completely randomized design with three replication and two factors, including Arbuscular mycorrhizal and irrigation regimes. Irrigation treatments were irrigation with 100% moisture content of field capacity (control), 70% moisture content between field capacity and permanent wilting point (MAD 30) and 40% moisture content between field capacity and permanent wilting point (MAD 60) and mycorrhizal treatments was including non-use of mycorrhizal and use of Glomus mosseae, G. intraradices, G. etunicatum and G. verciform. Some morphological traits including height, root length, root volume and root density, fresh and dry weight of leaf, stem and root, leaf area, number of leaf damage, leaf area, leaf diameter and symbiosis percent of grape roots with fungi were measured.
Results and Discussion: The results showed that mycorrhizal and 100% irrigation treatments increased the fresh and dry weight of leaf, stem and root, leaf area and the percentage of mycorrhizal symbiosis. Due to irrigation, the indices measured in the experiment such as height, fresh and dry weight of root, leaf and stem decreased, so that the decrease in without mycorrhizal plants was more than the with mycorrhizal plants. Generally, the use of mycorrhiza in this research has reduced the damaging effects of water stress on the morphological characteristics of grapevine, which in between the G. verciform and G. etunicatum were better than the G. mosseae and G. intraradices.
Conclusion: Grapevine phosphorus deficiency is usually rarely observed, not only mainly because of limited phosphorus requirement, but also because of sufficient phosphorus richness in the majority of vineyard soils and remobilization from bark, wood, and roots during periods of high P demand. Nevertheless, P deficiency have been described in vineyards in Australia, France, Germany and USA. Phosphorus deficiency symptoms correspond to stunt shoot growth, decrease in dry matter, and berry clusters.
Mycorrhizal treatments helped in alleviation of drought stresses. Enhanced uptake and storage of P, beyond what is required for immediate vegetative growth may be of particular importance for heavily pruned crops like grapes, since most of the new shoot growth is removed every year. These results were achieved in the greenhouse under almost controlled conditions and can be difficult to suggest for applying in the field conditions. Such experiments may be organized in the field conditions.
Present-day vineyard practices place several constraints on the use of functions provided by mycorrhiza. The risk of large, costly, or irreversible changes is to be reduced or averted. Future (modern) agriculture should be based on the implementation of ecological management practices that deliberately maintain resilience of ecosystem services. This means integrating the development of vineyard management strategies that optimize the impact of beneficial microbes like mycorrhizal fungi on production. Furthermore, AMF vary in their ability to provide ecological services so that suitable tools have to be defined to fully assess their contribution. Molecular tools have considerably improved the possibility to identify and monitor mycorrhizal fungi in ecosystems, but a quick and reliable test for assessing their functionality is still lacking. For producers’ expectations to be met, a novel industry encompassing soil/mycorrhiza analyses and advice to producers/managers is needed. Additional barriers to rationally exploiting beneficial soil microbes like mycorrhizal fungi as ecosystem services range from economical, technical, and cultural aspects to legislative questions. In spite of this, considerable progress has been made in the last decade for crop plants in general, but also for grapevine, towards the use of AMF.
Tahereh Bahrami; Vahid Rouhi; Abdolrahman Mohammadkhani; Saeid Reezi
Abstract
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green ...
Read More
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping.
Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida) in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10%) and rice hull (zero, 7, and 14%). Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of flower, stem diameter, plant height and diameter, crown diameter, the number of produced seedlings, root volume and chlorophyll. The weight of different mediums measured for medium of green roof suitable texture. In addition, in the certain period (three months), water consumption calculated with considering of daily evaporate and transpiration for each of medium. Data analyzed using SAS and MSTAT-C statistical program and means compared using a Duncan test (p < 0.05).
Results and Discussion: The results showed that vermicompost treatments had significant effects on the number and diameter of flowers and stem height of the plant, but had no effect on plant's stem diameter. Based on the results, different amounts of vermicompost increased the flower number and average per day and also the plant length. The largest flower number (88.33) and average (6.3) per day and the plant length (14.52) were observed in 10% vermicompost treatment and the lowest observed in control treatment. In addition, rice hull treatments had significant effect on flower number and diameter. However, rich hull had not any significant effect on stem number and diameter. Mean comparisons showed the highest and lowest flower number (82.4 and 82.1), mean flower number per day (5.88 and 5.86) in 14% and 7% rice hull treatments, respectively. Also, the highest flower diameter was related to 14% rice hull treatments. Result of analysis variance table showed significant effect on flower crown weight, length and diameter and root volume. Rice hull treatments also had significant effect on flower crown number and diameter and root volume. In this study, combination of 10% vermicompost with %7 rice hull treatment, have the greatest impact on the latedmost traits and reducing water consumption on green roof. As results showed water consumption in the certain period (three months), the lowest consumption belonged to 14% rice hull without vermicompost that had lowest water consumption in comparison with reference. In addition, the heaviest weight of different mediums was related to control and the lightest medium was belonged to 5%, vermicompost in combination with 14% rice hull.
Conclusion: The vermicompost and rice hull as bio-fertilizers not only increased structure, physical and chemical condition of medium but also increased nutrition and reduced water consumption. Vermicompost and rice hull both improved the most flower traits on green roof and reduced water consumption and weight of different mediums. Therefore, the vermicompost and rice hull (14% and 7%) combined with soil mixture can be used as a culture medium in green roofs.
Vahid Rouhi; Behrooz Shiran; Abdolrahman Mohamadkhani
Abstract
The Zinnia (Zinnia elegans J.) flower has many applications in landscape design, whereas lack of adequate conditions and nutritions in some cases can reduce the quality and number of flowers. Therefore, control of growth conditions is very important related to nutrition and application of growth regulators ...
Read More
The Zinnia (Zinnia elegans J.) flower has many applications in landscape design, whereas lack of adequate conditions and nutritions in some cases can reduce the quality and number of flowers. Therefore, control of growth conditions is very important related to nutrition and application of growth regulators to improve the quality and quantity of flowers. Flower's morphology and longevity are two main factors that are used to evaluate the quality of flowers. Application methods that could increase the vase life, is important. A research conducted to investigate the effects of calcium chloride, gibberellin and Benzyladenin on zinnia quantitative and qualitative characteristics in 2010. Experiment carried out in a factorial in randomized complete block design with four replications at the Sharekord University's research farm. Treatments consisted calcium chloride (0, 0.5 and 1 gram per liter), Gibberellin (0, 75 and 150 mg per liter) and benzyladenine (0, 75 and 150 mg per liter) to be sprayed on plant two times in 10 days interval. The result showed that calcium chloride increased stem diameter, number of lateral shoots and flowers and storage vase life. Gibberellin reduced flower and stem diameter, number of axillary shoots and flower. Gibberellins also reduced the beginning of flowering time from transplanting and increased the vase life of the flower on plant and storage. Furthermore, benzyladenine significantly increased the quality and quantity of plant except the flowering period.