Medicinal Plants
Fatemeh Khosravi; Mohammad Ali Bahmanyar; Vahid Akbarpour
Abstract
Introduction
Humic acid as an organic matter, made during chemical processes in the soil leads to improved root growth and aerial part of the plant. It increases the penetration of elements in the plant and improves water permeability. Zinc is involved in the maintenance of root cell membranes, ...
Read More
Introduction
Humic acid as an organic matter, made during chemical processes in the soil leads to improved root growth and aerial part of the plant. It increases the penetration of elements in the plant and improves water permeability. Zinc is involved in the maintenance of root cell membranes, the activation of antioxidant enzymes, and the production of RNA and DNA. This study aimed to investigate the effect of applying humic acid and zinc sulfate on some morphological and phytochemical traits of Salvia officinalis L.
Materials and Methods
In this regard, this experiment was conducted as a factorial based in a completely randomized design with two factors (concentrations of 0, 1.5, 3 and 4.5 g/l humic acids and concentrations of 0, 3, 6 and 9 g/l zinc sulfate) in five replications in 2021. The studied traits included plant height, stem diameter, fresh weight, and dry weight, number of sub-branches, chlorophyll, carotenoids, phenols, flavonoids and essential oils. Seedlings of the same size and age as sage were grown under equal. The properties of the soil used in the laboratory were examined. Treatments were sprayed with humic acid 6% and zinc sulfate 34% in five steps, every two weeks.
Results and Discussion
Result showed that application of humic acid and zinc sulfate had no significant effect on plant height and only their simultaneous use had a significant effect on this trait and the highest plant height was observed for treatment of 1.5 g/l humic acid and 9 g/l zinc sulfate (66.50 cm). In stem diameter analysis, the use of humic acid (p≤0.01) and the application of zinc sulfate (p≤0.05) and the interaction of these two treatments(p≤0.05) affected the stem diameter. According to the results, the highest stem diameter was 8.69 mm, which occurred in the treatment of 4.5 g/l humic acid and 3 g/l zinc sulfate. Application of humic acid significantly (p ≤ 0.01) affected the fresh weight of the plant. Application of zinc sulfate also had a significant effect (p ≤ 0.05) on fresh weight. The effect of simultaneous use of humic acid and zinc sulfate on the fresh weight of this plant was significant at the level of 1% probability and the highest fresh weight was 87.26 g.plant-1, which achieved at a concentration of 4.5 g/l humic acid and 6 g/l zinc sulfate. Compared to the control plant, it has increased by 12.56 grams. The effect of humic acid on dry weight was significant at the level of 5% probability, while the effect of zinc sulfate application on this trait was not significant. The combined use of humic acid and zinc sulfate was significant at the 1% probability level. The maximum dry weight reached 29.73 grams per plant, achieved with a concentration of 4.5 grams per liter of humic acids and 3 grams per liter of zinc sulfate. Both humic acid and zinc sulfate exhibited a significant effect (at the one percent level) on the number of branches. Furthermore, the combined application of humic acid and zinc sulfate proved to be highly effective (p<0.01). The greatest number of sub-branches was observed at the 1.5 grams per liter level of humic acid. Humic acid had a substantial impact on chlorophyll a, b, total chlorophyll, and carotenoids (p≤ 0.01). Similarly, the application of zinc sulfate showed significant effects on chlorophyll a, b, and carotenoids (p≤ 0.01), as well as on total chlorophyll (p≤ 0.05). In the end, the simultaneous application of humic acid and zinc sulfate significantly influenced chlorophyll a, b, total chlorophyll, and carotenoids (p<0.01). The most significant effects on photosynthetic pigments (carotenoids, chlorophyll a, and total chlorophyll) were observed with concentrations of 4.5 grams/liter of humic acid and 6 grams/liter of zinc sulfate. The highest chlorophyll b content was obtained with the treatment of 3 grams/liter of humic acid and 6 grams/liter of zinc sulfate. The effect of humic acid and zinc sulfate application as well as their simultaneous use on the amount of phenols and flavonoids was significant at the level of 1% probability. The highest amount of phenol was 0.372 (mg gallic acid per gram of fresh tissue) which was obtained at a concentration of zero zinc sulfate and 3 g/l humic acid. The highest flavonoid content was 0.527 (mg quercin per gram of fresh tissue) which was observed in the treatment of 4.5 g/l humic acids. The use of humic acid had significant effect on the amount of essential oil. The percentage of essential oil reached the highest levels at the concentrations of 1.5 and 3 g/l humic acids.
Conclusion
Based on the results, the use of humic acid alone and in combination with zinc sulfate, had the greatest effect on most of the studied traits.
Medicinal Plants
Roghayeh Raei; Vahid Akbarpour; Mohammad Ali Bahmanyar
Abstract
Introduction Fertilizer management is one of the main factors in achieving sustainable agriculture. Therefore, the integrated agricultural system recommends the use of organic matter along with the optimal use of chemical fertilizers. This method is a balanced way to improve the physical and ...
Read More
Introduction Fertilizer management is one of the main factors in achieving sustainable agriculture. Therefore, the integrated agricultural system recommends the use of organic matter along with the optimal use of chemical fertilizers. This method is a balanced way to improve the physical and chemical properties of the soil, which leads to improved growth and increased plant yield. Organic fertilizers, especially livestock manures, have higher levels of organic matter than chemical fertilizers, and can be considered as sources of nutrients, especially nitrogen, phosphorus and potassium. One of these organic fertilizers is poultry manure, which in addition to having macro and micro elements (manganese, iron, copper, and boron) is one of the cheapest fertilizers compared to other fertilizers used. It is also richer in terms of nitrogen than other animal fertilizers. Soil fertility is the factor that change the amount of active substances and essential oils. Micronutrients such as zinc, although needed in small amounts by plants, play an important role in plant growth and development. The application of zinc sulfate fertilizer improved the quantitative and qualitative attributes of basil, peppermint, sage, and rosemary. Researchers stated that the application of a combination of chemical fertilizers and poultry manure has increased the yield of garlic essential oil. Therefore, in recent years, integrated plant nutrition management has been discussed. Integrated plant nutrition management is based on the simultaneous application of organic, chemical, and biological fertilizers. Because organic fertilizers alone can’t provide the needs of high-yielding plants. Combined application of organic, chemical, and biological fertilizers can improve the physical and chemical conditions of the soil and increase organic carbon and nutrients. Savory is an aromatic medicinal plant from the mint family. This plant has a lot of essential oils and is very important in the food, pharmaceutical, and health industries. The aim of this study was to investigate the role of poultry manure and zinc sulfate in the cultivation of savory.Materials and Methods The present experiment was performed as a factorial in a completely randomized design with 3 replications. The factors consisted of poultry manure with four levels (0, 3, 6, and 9 t.ha-1) and the second factor zinc sulfate with four levels (0, 50, 100 and 150 mg.kg-1 soil).Results and Discussion According to the obtained results, the effect of poultry manure, zinc sulfate, and their interaction on most of the studied traits was significant. The highest height was observed in the treatment of poultry manure of 9 t.ha-1 + zinc sulfate in 100 mg. kg-1 soil, which showed an increase of 79.26% compared to the control, and the lowest height belonged to the control treatment. The total chlorophyll in the chicken manure treatment of 6 t.ha-1 + zinc sulfate in 150 mg. kg-1 had a significant increase compared to the control. The highest amount of leaf nitrogen was obtained in the treatment of poultry manure of 9 t.ha-1 + 50 mg.kg-1 with an increase of 82.03% compared to the control. Zinc element was observed with a 222.75% increase in poultry manure treatment of 9 t.ha-1 + 150 mg.kg-1. Poultry manure treatment of 6 tons per hectare + 150 mg.kg-1 with 261.53% increase compared to the control contained the highest percentage of essential oil.Conclusion The results of the study showed that the use of combined ratios of poultry organic fertilizer and zinc sulfate has been effective in improving vegetative attributes, available plant elements, and essential oil content.
Medicinal Plants
Vahid Akbarpour; Mostafa Motaharinezhad; Mohammad Ali Bahmanyar
Abstract
Introduction
Nowadays, spraying method is used in plant nutrition to optimize the use of chemical fertilizers and reduce environmental hazards. With the foliar solution, the elements are quickly transferred to the plant and delivered to the branch, leaf, or fruit. Surveys show that increase performance ...
Read More
Introduction
Nowadays, spraying method is used in plant nutrition to optimize the use of chemical fertilizers and reduce environmental hazards. With the foliar solution, the elements are quickly transferred to the plant and delivered to the branch, leaf, or fruit. Surveys show that increase performance per unit area is one of the most important things that has attracted the attention of many researchers. The first requirement for high performance is high dry matter production per unit area. Some experiments have shown that increasing the amount of carbon dioxide in the air can increase yield, accelerate flowering and accumulate carbohydrates in plants. One of the solutions to increase carbon dioxide concentrations in plants is to use compounds such as ethanol and methanol. Therefore feeding plants with alcohols such as ethanol and methanol as carbon sources is one of the appropriate methods to increase their quantitative and qualitative properties.
Materials and Methods
Due to the importance of peppermint (Mentha piperita L.) in the production of valuable secondary metabolites, and also the effect of ethanol and methanol on some morphological and physiological parameters of this plant, a pot experiment was conducted in factorial based on completely randomized design with three replications in the research greenhouse of Shahed University in 2018. Foliar treatments included different concentrations of 0, 15, 30 and 45% ethanol, methanol and combine them that was done in three stages. The studied traits were plant height, number of leaves per plant, biological yield, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, flavonoid, essential oil percentage, essential oil yield and protein percentage. Data analysis was performed using SAS statistical software (version 9.2) and mean treatments were compared by LSD test. Also charts were drawn by excel software.
Results and Discussion
The results showed that the simple effects of ethanol and methanol on plant height, biological yield, flavonoid content, essential oil percentage, essential oil yield and protein percentage were significant but their interactions were not significant. Ethanol 45% had the most effect on percentage and yield of essential oil and protein percentage. But the use of 15% ethanol treatment had the highest value in other traits (plant height, total phenol and flavonoids), which was at a statistical level with 45% methanol treatment. Also interaction between ethanol and methanol on leaf number per plant, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid was significant at 1% probability level. The highest number of leaves per plant and chlorophyll a (29.55 µg/g fresh leaf weight) was observed in the combination of 15% ethanol and 15% methanol, while the highest amount of chlorophyll b (20.86 µg/g fresh leaf weight) and total chlorophyll (49.85 µg/g fresh leaf weight) was related to the combined application of 15% ethanol and 45% methanol.
Conclusion
Foliar spraying is one of the methods of fertilization and supply of nutrients to plants that due to high absorption rate nutrients can be made available to plants in the shortest time. The results of this study showed that all the studied traits were significantly affected by one or more of the ethanol and methanol treatments. Therefore, the foliar application of ethanol and methanol as carbon sources has an important role in improving the qualitative and quantitative parameters of peppermint.