Pomology
Hossein Sartip; Ali Akbar Shokouhian; Esmaeil Chamani; Alireza Ghanbari
Abstract
IntroductionSweet cherry is very popular due to its early maturity, high transportability, attractive appearance and good taste of the fruit. The high content of sugars, ascorbic acid, vitamins, carbohydrates and organic acids in the fruit increases the interest in this product both in industrial gardening ...
Read More
IntroductionSweet cherry is very popular due to its early maturity, high transportability, attractive appearance and good taste of the fruit. The high content of sugars, ascorbic acid, vitamins, carbohydrates and organic acids in the fruit increases the interest in this product both in industrial gardening and home gardening. The damage caused by cold in the critical stages of plant growth is one of the important factors in reducing the yield of plants all over the world. Salicylic acid is one of the phenolic compounds that is produced by the roots, and by reducing the activities of reactive oxygen species, it increases the resistance of plants to various environmental stresses (Mahmoudi et al., 2019). Salicylic acid not only plays an important role in determining the quality, color and taste of grape fruit (Hajivand & Rahmati, 2018), but also in the plant's response to environmental stresses such as drought (Miura & Tad, 2014), cold (Kosova et al., 2014) salinity (Noreen et al., 2014) and heavy metal stress (Mahmoudi et al., 2019) are effective. Commercial compounds such as plant growth regulators, including antiperspirant and antifreeze substances, are also used to increase cold resistance or delay the breaking of bud stagnation in horticultural crops (Mahmoudzade et al., 2012). Another way to reduce spring cold damage is to use Natural Plant Antifreeze. These materials either act as a mechanical barrier to prevent the formation of ice crystals on sensitive plant tissues or activate cold resistance systems in the plant (Hajivand & Rahmati, 2018).Materials and MethodsIn order to investigate the effect of the application of growth regulators, on the cold resistance of the cherry tree variety "Siah Daneh Mashhad", a factorial experiment was conducted in the form of a randomized complete block design with 3 factors of growth regulators each at 3 levels. (salicylic acid: zero, 1.5 and 3 mM), (natural antifreeze Thiofer: zero, 2.5 and 5 per 1000) and (soybean oil: zero, 2.5 and 5 per 1000)} and in 4 repetitions It was performed in a commercial garden located in Serain city in 2018 and 2019.Results and DiscussionThe results of the variance analysis revealed that the three-way interactions of the experimental factors significantly influenced the percentage of healthy pistils and the duration of flowering cessation at the 1% probability level. The highest percentage of healthy pistils, reaching 69.25%, was observed in the treatment involving foliar spray application of salicylic acid (1.5 mM) combined with soybean oil (5/1000) and foliar spraying of Thiofer natural antifreeze (5/1000). Furthermore, the combined effect of salicylic acid and natural antifreeze was found to be the most effective in delaying the onset of flower opening. The highest amount of ion leakage percentage was observed in the control treatment and the lowest amount was observed in the 3 mM salicylic acid foliar treatment along with soybean oil (5 per 1000) Thiofer. According to the data variance analysis table (Table 1), the ion leakage index was affected by the simple effect of salicylic acid, soybean oil and antifreeze and the interaction effect of salicylic acid oil × salt, salicylic acid × soybean oil, and soybean oil × antifreeze. The activity of malondialdehyde was affected by the simple effect of salicylic acid and soybean oil and the interaction effect of salicylic acid × year and year × soybean oil (Table 1). The total phenolic content was also affected by the simple effect of salicylic acid and soybean oil (Table 1). According to Figure 11, increasing the concentration of salicylic acid increased the content of total phenol, so that the highest content of total phenol (53.22%) was obtained in the treatment of 3 mM salicylic acid, while there was no significant difference in the treatment of 1.5 mM salicylic acid. . To adapt to the cold, phenolic compounds accumulate in plants, which are related to the antioxidant capacity of the plant (Mozafari &Yazdan Panah, 2018). A decrease in temperature increases the accumulation of phenolic compounds in the plant and can act as a mechanism to adapt and overcome the oxidative stress caused by low temperature (Balasundram et al., 2007). Balasundram and colleagues (Balasundram et al., 2007) noted that grape plants exhibit an accumulation of phenolic compounds and proteins while maintaining membrane stability at low temperatures. This accumulation leads to reduced production of malondialdehyde, enhancing the plant's adaptability and tolerance to cold temperatures, thereby reducing the risk of freezing. Similar observations of increased phenolic compound levels during cold adaptation have been reported in pistachios (Palonen, 1999) and apples (Huang & Wang, 1982). Chen and Tian (Chan & Tian, 2006) reported an increase in phenolic compound accumulation following enhanced activity of phenylalanine ammonia-lyase enzymes in grapes treated with salicylic acid. From their findings, they concluded that salicylic acid plays a pivotal role in the biosynthesis of phenolic compounds and the activation of plant defense genes.ConclusionAccording to the observations of this research, it can be concluded that the use of salicylic acid along with soybean oil and natural antifreeze of Thiofer is a suitable solution in order to delay the opening time of flowers and also to increase the indicators of cherry cold resistance against The tension is cold.
Esmaeil Chamani; Zahra Eftekhari; Alireza Ghanbari; Hamid Reza Heydari; Mousa Arshad
Abstract
Introduction: Fritillaria imperialis L. is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resource is in danger of extinction, Because of grazing livestock and pest outbreaks. Therefore, micro propagation of Fritillaria through in vitro regeneration is essential ...
Read More
Introduction: Fritillaria imperialis L. is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resource is in danger of extinction, Because of grazing livestock and pest outbreaks. Therefore, micro propagation of Fritillaria through in vitro regeneration is essential for conservation and commercial production. Thymol and Carvacrol are one of the main essential oil compounds in family Lamiaceae.
Material and Methods: Fritillariaimperialis L. bulbs in dormancy stage obtained from mountainous regions of Lorestan in Iran and were placed in cold room at +4 °C for 4-6 weeks. Then, Bulbs were surface-sterilized with 70% ethanol for 45 s followed by immersion in 5% (v/v) NaOCl solution for 20 min with gentle agitation, and then rinsed three times in sterile double distilled water. Present study was conducted in two separate experiments. In first experiment, effect of different concentration of Thymol and Carvacrol and in second experiment, different concentration of NAA and BA on in vitro characteristics of Fritillaria was evaluated. Explants (1× 1 cm) prepared from the lower third of scales with basal plate and were placed in MS basal medium supplemented with different concentrations of Thymol (50, 100, 150 and 300 ppm), Carvacrol (10, 100, 500 and 100 ppm), BA (1, 2 and 4 mg/l) and NAA (1, 2 and 4 mg/l).All cultures were incubated in a growth chamber at 24±2°C, and a photosynthetic photon flux of 40-60 μmol m–2 s–1 was provided by cool white fluorescent lamps with a 16-h photoperiod. This experiment wascarried out in completely randomized designs with fivereplications.
Results and Discussion: Analysis of variance showed that Thymol and Carvacrol were not effective on number of new bulblets but had significant effects on bulb diameter, number and length or roots, number and length leaves and callus induction and diameter of callus obtained from scales (P< 0.05). The highest rate (3 bulblets) of bulblets formation was obtained fromMS medium supplemented with 50 ppm Thymol that showed significantly difference from other treatments. Medium containing 10 ppm Carvacrol gave the highest Bulblet formation (2.5 bulblets) between Carvacrol treatments. Investigation of rooting was done by assessment of the number and length of roots. Mean comparison of the effect of cultivar type on root number showed that the largest number of roots per explant was obtained fromMS medium containing 50 ppm Thymol. Lowest number of roots observed in mediums supplemented with 300 ppm Thymol and 100 ppm Carvacrol. The best medium for increasing the root length per explant (10.90 cm) was MS medium supplemented with 100 ppm Carvacrol, while the least increasing in root length per explant observed from culture mediums contained 300 ppm Thymol and 100 ppm Carvacrol. Also, the largest number of leave formation obtained from culture medium supplemented with 50 ppm Thymol that significantly higher than other treatments. Statistical analysis (ANOVA) of the data showed that high frequency callus induction and formation occurred in MS mediums contained 50, 100 and 150 ppm Thymol and 10 ppm Carvacrol and culture mediums supplemented with 300 ppm Thymol and 1000 ppm Carvacrol showed least callus induction. In contrast, largest callus diameter observed in culture mediums supplemented with 300 ppm Thymol and 500, 100 ppm Carvacrol.
Statistical analysis of results showed that different concentrations of BA and NAA had significant effects on bulblets number and bulblets diameter (P
Esmaeil Chamani; Marziyeh Ghamari; Mahdi Mohoboldini; Alireza Ghanbari; Hamid Reza Heydari
Abstract
Introduction: Crown imperial (Fritillariaimperialis L.) is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional ...
Read More
Introduction: Crown imperial (Fritillariaimperialis L.) is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional multiplication methods such as scaling and Bulb division, many species of this genus are endangered. Using of biotechnology, namely in vitro plant propagation, is a solution to the problems of reproduction of rare and endangered plant species with difficult propagation and mass production of valuable genotypes. Therefore, micropropagation of F. imperialis through in vitro regeneration is essential for conservation and commercial production.
Material and Methods: The bulbs of F. imperialis in dormancy stage obtained from Ilam mountainous regions in Iran and theywere placed in wet vermiculite at 4 °C for 4-6 weeks. Then, Bulbs were surface-sterilized with 70% ethanol for 60s followed by immersion in 5% (v/v) NaOCl solution for 20min with gentle agitation, and they rinsed three times in sterile double distilled water. Explants prepared from the lower third of scales with basal plate and were placed in MS basal medium supplemented with different concentrations of NAA and 2,4-D for callus induction. Test tubes with bulb segments were maintained within 25±2°C in growth chamber at 16 hours light period by the illumination from white florescent tube light and 8 hours dark. After two months callus were transferred to MS basal medium without PGRs. Then, callus excised to 0.5 cm pieces and were transferred to MS basal medium supplemented with NAA in 0, 0.3 and 1 mg/l concentration.Three types of cytokinins with different concentrations were arranged in three seperated experiments. Thefirst experiment medium contained NAA with BA (0, 0.3, 0.5 and 1 mg/l), the second experiment NAA combined with 0, 0.1, 0.3 and 0.5 mg/l TDZ and the third experiment MS basal medium included NAA with Kin (0, 0.5, 1 and 1.5 mg/l). After three months, percentage of callogenesis, diameter of calli, percentage of regeneration, number of leaves and roots and length of leaves and roots were measured. This experiment were carried out in completely randomized design with 4 replications.
Results and Discussion: In the first experiment application of NAA and BA on in-vitro multiplication of F. imperialis were evaluated. Highest callogenesis and formation (100 %) was observed in mediums contained 0.3 mg/l NAA + 1 mg/l BA, 0.6 mg/l NAA + (0.3, 0.5 and 1 mg/l) BA. Also, callogenesis was obtained in medium contained 0.5 mg/l BA without NAA. This result showed that only in medium supplemented with 1 mg/l BA provided highest (100%) callogenesis, when NAA concentrations were low. However, high levels of NAA (0.6 mg/l) in all concentrations of BA were obtained maximum callogenesis. We concluded that NAA is essential for callogenesis and enhancing its levels can increase callogenesis. Also, application of low levels of BA (0.4 µM) in callogenesis mediums of Cynodon dactylon contained Auxins resulted in increment of embryogenetic calli formation. In the other hand, presence of BA is essential for plantlet regeneration, however NAA is not necessary. Plantlet regeneration was obtained in PGRs free medium. Statistical analysis of results showed that different concentrations of BA and NAA had significant effects on percentage of callogenesis, diameter of calli, percentage of regeneration, length of leaves and roots (P
Esmaeil Chamani; Mohammad Bonyadi; Alireza Ghanbari
Abstract
Introduction: Vinca flower (Catharanthus roseus L.) is one of the most important medicinal plants of Apocynaceae (31, 27). Tropical plant native to a height of 30 to 35 centimeters (9) and a perennial shrub which is grown in cold areas for one year (27).One of the plants in the world today as a medicinal ...
Read More
Introduction: Vinca flower (Catharanthus roseus L.) is one of the most important medicinal plants of Apocynaceae (31, 27). Tropical plant native to a height of 30 to 35 centimeters (9) and a perennial shrub which is grown in cold areas for one year (27).One of the plants in the world today as a medicinal plant used the periwinkle plant. Among the 130 indole – terpenoids alkaloids which have been identified in the plant periwinkle vinca alkaloids vincristine and vinblastin are the most important component is used to treat a variety of cancers. Including therapies that are used for a variety of cancer, chemotherapy to help Vinca alkaloids collection (including vincristine and…). Vinblastin as effective member of this category, due to the low percentage of venom and effects at very low doses, is widely used today. These materials are generally formed as inhibitors of mitotic spindle in dividing cells have been identified. Vinblastin with these structural changes in connection kinotokor - microtubules and centrosomes in a dividing cell, the mitotic spindle stop (45).Salicylic acid belongs to a group of phenolic compounds found in plants, and today is widely regarded as a hormone-like substance. These classes of compounds act as growth regulators. Humic substances are natural organic compounds that contain 50 to 90% of organic matter, peat, charcoal, rotten food and non-living organic materials are aquatic and terrestrial ecosystems (2).
Materials and Methods: In this experiment, vinca F2 seeds in the mixed 4: 1 perlite and peat moss to the planting trays were sown. The seedlings at the 6-leaf stage were transfered to the main pot (pot height 30 and 25 cm diameter) The pots bed soil mix consisting of 2 parts soil to one part sand and one part peat moss (v / v) were used and after the establishment of seedlings in pots every two weeks with. Salicylic acid and humic acid concentrations 0 (control), 10, 100, 500 and 1000 mg were treated as a foliar spray. Salicylic acid and humic acid used in the Merck has the solutions according to plant size in proper volume has been prepared and will be sprayed on aerial spraying. According to the bootblack periwinkle flowers and leaves to prevent leaf burn and create the solution at one point, for every cc100 solution, two drops of Tween 20 was added to the solution, then spray on the leaves and leaf fire does not spread. The experiment was conducted in a completely randomized design with 10 replicates at the end of the results by the SAS software analysis and comparison of means by Duncan's multiple range tests was performed.
Results and Discussion: According to the results of the data analysis of different treatments significant impact on the level of 1% of the height, number of leaves, chlorophyll, stomatal conductance, pods and stems of the side. Also, the tally was significant at 5%.According to the results of the data analysis of different treatments on stem diameter had no significant effect. Results of comparing the average of the data showed that treatment with 10 and 500 mg/l of salicylic acid per liter respectively in the first and second measurement and control showed lowest height. Treatment of 100 mg/l of humic acid maximum height was measured in two stages. The results of the comparison showed that an average of 500 mg/l of salicylic acid in a two-step measurement and control had the lowest number of leaves. Treatment with 10 mg/l in the first stage of the operation (L1) and treated with 100 mg/l of humic acid in the second vector data (L2) had the highest number of leaves. Treatment with 10 mg/l of salicylic acid and 100 mg/l of humic acid had the highest chlorophyll. The treatment of 10 mg/l of salicylic acid and 100 mg/l of humic acid had the highest stomatal conductance. The results of the comparison average showed that the 500 mg/l of salicylic acid and humic acid had the greatest impact on the number of flowers. As well as 500 mg/l salicylic acid and humic acid had the greatest impact on the number of pods. The results showed that treatment with 1000 mg/l salicylic acid and humic acid had the greatest effect on stem diameter.
Conclusion: The results of this study indicated that low concentrations of salicylic acid increased plant height, the number of leaves, chlorophyll content and stomatal conductance, which can increase plant resistance against unfavorable environmental conditions.
As a result, the plants treated with salicylic acid can be increased two driven in adverse environmental conditions. The treatment of humic acid by increasing the rate of photosynthesis and increases the amount of material available for plant growth. This increase can accelerate the growth of the main branch and side periwinkle plant medicinal plants and enhances the appearance of the plant.