Growing vegetables
Zahra Khalili; Fatemeh Nekounam; Taher Barzegar; Zahra Ghahremani; Maliheh Farhangpour
Abstract
Introduction: Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, which is one of the most widely cultivated and economically important vegetables in the world, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. ...
Read More
Introduction: Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, which is one of the most widely cultivated and economically important vegetables in the world, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in scavenging reactive oxygen species (ROS), and enzyme cofactor. Ascorbic acid is antioxidant and antistress agent, and also acts as a signaling molecule in some plant physiological processes and defense mechanisms. Positive roles of such antioxidants in scavenging or chelating the free radicals and activating the natural resistance against different biotic and abiotic stresses have been reported in several fruit trees. Calcium has a vital role for normal growth and development of plants due to an important role in balancing membrane structures, increasing nutrient uptakes and activates of metabolic processes. Calcium plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. To our knowledge, however, little information is available regarding the interaction effect of ascorbic acid and calcium chloride on tomato. Thus, the aim of this study was to investigate the foliar application of ascorbic acid and calcium chloride on quality and antioxidant capacity of tomato fruit.Materials and Methods: To study the effect of foliar application of calcium chloride (Ca) and Ascorbic acid (AsA) on growth, yield and fruit quality of tomato, the field experiment was carried out from June to September 2021 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Each treatment was carried out with three replicates. Different concentrations of Ca (0, 0.3, 0.6 and 0.9 %) and AsA (0, 100, 200 and 300 mg L-1) were sprayed three times (0, 15, 30 days after full bloom). Fruits were harvested at two harvests stage (orange and red color) and transferred to the laboratory on the same day. Flesh firmness was determined with penetrometer (model Mc Cormic FT 32), using an 8 mm penetrating tip. Results were expressed in kg cm-2. The pH values of solutions were monitored with pH meter. TSS was measured in the extract obtained from three fruit of each replicate with a digital refractometer Atago PR-101 (Atago Co., Ltd., Tokyo, Japan) at 20◦C. Total ascorbic acid content was expressed as mg per 100 g of juice. Antioxidant activity was measured using the free radical scavenging activity (DPPH) and calculated according to the following formula: RSA%= 100(Ac-As)/Ac. Statistical analyses were performed with SPSS software package v. 20.0 for Windows, and means comparison were separated by Duncan’s multiple range tests at p <0.05.Results and Discussion: The results showed that fruit harvested at red color stage had the higher vitamin C, total soluble solid (TSS), total phenol, flavonoids contents and antioxidant capacity compared to fruit harvested at orange color stage. Foliar application of AsA and Ca had significantly improved tomat fruit quality. The highest value of TSS (4.9 °B), vitamin C (46.1 mg 100ml-1), total phenol and flavonoids contents and antioxidant capacity (36%) was achieved with application of 300 mg L-1 AsA and 0.9% Ca in fruit harvested at red color harvest time. The lowest value of pH and highest TA was observed in red color fruit treated with 300 mg L-1 AsA and all Ca levels. Ca had significant effect on fruit firmness, which the highest fruit firmness was obtained from 0.9% Ca. The fresh tomato is an important source of ascorbic acid for human consumption. AsA significantly increased the amount of vitamin C in the plum and sweet pepper fruits. Increasing vitamin C content in fruits after treatment with Ca could be related to inhibiting action of calcium on the activities of ascorbic acid oxidase that use ascorbate as a substrate. The results indicated that treatment of Ca produced fruits with higher firmness compared to control and other treatments. Firmness and resistance to softening can be increased by the addition of Ca, due to interaction of calcium with pectate acid in the cell wall to form calcium pectate and retarding polygalacturonase activity. Differences in the percentage of TSS content at the time of harvest indicated the AsA and Ca effects on carbohydrate accumulation in fruits, which had different potential on respiration rates and consequently storability of plants. The antioxidant activity has positive correlation with total phenolic content, flavonoids and content of ascorbic acid. Conclusion: The results of our research indicated that per-harvest foliar application of AsA and Ca improved fruit quality attributes including vitamin C, fruit firmness, TSS and antioxidant activity. These results suggest that AsA and Ca treatments, especially AsA 300 mg L-1 and Ca 0.9%, may be proposed to improve fruit quality.
Medicinal Plants
Seyyed Amir Hossein Mousavi; F. Nekounam; Taher Barzegar; Zahra Ghahremani; Jafar Nikbakht
Abstract
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as ...
Read More
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. Therefore, it has received special attention for cultivation all over the world. Increasing crop production and mitigating abiotic stresses are major challenges under extreme climatic environments and intense farming activities. Crop management strategies such as deficit irrigation can decrease soil evaporation, runoff, and plant transpiration, and increase water use efficiency (WUE) and water conservation. In addition to these practices, organic input, which includes the application of organic materials such as compost and humic substances, is an additional strategy that increases soil water retention and can potentially improve plant WUE. Water is crucial for agriculture and needs to be used effectively due to climate change and drought in Iran. For this reason, to adapt to water deficit scenarios, deficit irrigation applications are increasing in importance. Water availability is expected to be a growth limiting factor that would affect fruit yield in Physalis peruviana due to reduced flower set and elevated floral abscission rate.
Materials and Methods
In order to investigate the effect of humic acid on physiological characteristics, yield and fruit quality of Physalis peruviana under deficit irrigation conditions, a split plot experiment based on randomized complete block design with three replications was conducted during 2021. Treatments consisted arrangement of three levels of irrigation (starting irrigation at 100, 80 and 60% ETc (crop evapotranspiration)) and three levels of humic acid (0, 1.5 and 3 kg ha-1). The seeds of Physalis peruviana were sown in seedling trays contain peat moss. The seedlings were grown under normal conditions (25±2 °C/day and 20±2 °C at night with 60-65% RH). Plant height, total chlorophyll, fruit yield per plant, total soluble solid content, titratable acidity, vitamin C content and water use efficiency were measured. Statistical analyses were performed with SAS V9.3, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion
The results showed that deficit irrigation significantly reduced growth, fruit yield, vitamin C and increased water use efficiency (WUE) and Total soluble solid content of Physalis peruviana. The soil application of humic acid significantly increased total chlorophyll, fruit quality and yield, and decreased leaf electrolyte leakage under normal and deficit irrigation, thus, the deficit irrigation 60 ETc% decreased the plant height by 18.6% and the fruit yield by 22.2% compared to irrigation 100 ETc%. The maximum plant length (200.3 cm), total chlorophyll content (2.42 mg g-1FW) and fruit yield (4793.3 kg ha-1) were observed in plants treated with 3 kg ha-1 humic acid under 100% ETc irrigation. The highest value of total soluble solid (12.6 B°), antioxidant activity (90.06 %) and WUE (1.23 kg m-3) were obtained with 3 kg ha-1 soil application of humic acid under deficit irrigation 60% ETc. The application of 3 kg ha-1 humic acid under 100 and 80 %ETc irrigation increased the fruit yield by 25% and 4%, respectively, compared to the control plants (non treated with humic acid) under irrigation100 ETc% and under deficit irrigation 60 ETc%, with decreasing 11% fruit yield, water consumption was saved by 40%. Soil and crop management practices that alter plant water and nutrient availability could affect the processes of crop evapotranspiration and WUE, which can influence the yield and fruit quality by changing the internal nutrient and water balance. Incorporating organic matter within a crop growth system either as leaf spray or soil mix is a complementary strategy to improve crop growth and WUE. By inducing antioxidant enzyme activities, HS could assist plants in stomata functioning, thereby closing stomata more efficiently under drought stress, which results in plant water conservation. The reason of the difference between WUE values probably appeared due to the differences on Physalis peruviana yield. WUE showed an upward trend with an increasing in irrigation.
Conclusion
Study results suggest that soil application of humic acid with increasing vitamin C, TSS and TA, improved fruit quality. According to the results, application of 3 kg ha-1 humic acid is suggested to improve fruit yield and quality of Physalis peruviana under normal and deficit irrigation conditions.
Growing vegetables
Parastoo Molaei; Taher Barzegar; Mohammad BabaAkbari Sari; Fatemeh Nekounam; Zahra Ghahremani
Abstract
Introduction
Excessive use of chemical fertilizers threatens the environment and leads to production of unsafe food products. Currently, the market share of organic vegetables is constantly increasing due to customer demand for safer and healthier food. Therefore, it is necessary to find alternatives ...
Read More
Introduction
Excessive use of chemical fertilizers threatens the environment and leads to production of unsafe food products. Currently, the market share of organic vegetables is constantly increasing due to customer demand for safer and healthier food. Therefore, it is necessary to find alternatives instead of using chemical fertilizers in plant production.
Lettuce (Lactuca sativa L.), belongs to Asteraceae family is considered as one of the most popular salad vegetables as a cool season crop. It is also one of the most important vegetables due to its rapid growth and commercial value. Plant growth promoting bacteria promote plant growth directly by facilitating nutrient uptake through fixing nitrogen, solubiliszation of phosphorus, production of hormones and iron uptake. Arbuscular mycorrhizal fungi establish symbioses with plant roots which help to improve nutrient uptake by the host plant and alter its physiology to withstand external abiotic factors and pathogens. Arbuscular mycorrhizal fungi interactions with bacteria have been reported to enhance plant growth through phosphate solubilization, nitrogen fixation, increased AMF spore germination and colonization of plant roots. The potential of co-inoculation of these two organisms in promoting the growth of horticultural crops like tomato, strawberry, lettuce and spinach have also been reported.
Materials and Methods
In order to compare the effect of growth-promoting bacteria, mycorrhiza fungi and chemical fertilizers on morphological and physiological properties of lettuce (Lactuca sativa cv. New Red Fire), the experiment was carried out in a completely randomized design with three replications. Experiment treatments consisted of 14 treatments including three levels of potassium solubilizing bacteria (Pseudomonas vancouverensis, Pseudomonas koreensis, Pseudomonas vancouverensis + Pseudomonas koreensis) + 100% N and P, three levels of phosphorus solubilizing bacteria (Pantoea agglomerans, Pseudomonas putida and Pseudomonas putida + Pantoea agglomerans) + 100% N and K, and one level of potassium and phosphorus solubilizing combined bacteria (Pantoea agglomerans+ Pseudomonas koreensis+ Pseudomonas putida+ Pseudomonas vancouverensis) + 100% N, mycorrhiza fungi combination of three Glomus species (G. mosseae, G. etunicatum and G. intraradices) + 100% N and K and five chemical fertilizer levels (N100P100K100, N100P100K0, N100P0K100, N100P25K100 and N100P100K25) according to soil test results, and control treatment without bio-mineral fertilizers.
The “New Red Fire” lettuce seeds were surface sterilized with 0.5% (v/v) sodium hypochlorite for 10 min, and germinated at 20ºC. After germination, seedlings of similar size were transplanted singly into pots containing agricultural soil. Plants were grown under greenhouse condition of 60/70% (day/night) relative humidity, 15/18 °C (day/night) temperature. After a growth period of 75 days, plants were removed from the pots. The root system was separated from the shoot and washed to remove adhered soil. Root and shoot fresh weight, chlorophyll, vitamin C, anthocyanin, TA, TSS and nitrate contents were measured.
Results
The results showed that application of potassium and phosphorus solubilizing bacteria and mycorrhiza fungi significantly increased plant growth compared to control plant. The highest fresh shoot weight (increase of 42.3%) and crown diameter (increase of 14.4%) was obtained with application of combined potassium and phosphorus solubilizing bacteria treatment + 100% N fertilizer compared to control plants. Application of Pseudomonas koreensis + 100% N and P resulted in the maximum content of anthocyanin (increase of 62.2%) and total soluble solids (increase of 82.5%) compared to control plants. Ascorbic acid, a well-known antioxidant and organic compound, is an essential vitamin can be obtained from fruits and vegetables. The highest vitamin C content (32.3 mg 100 mL-1) was observed at plant treated with N100P100K100 fertilizer. The maximum titratable acidity content was obtained with application of Pseudomonas vancouverensis + 100% N and P, and combined potassium and phosphorus solubilizing bacteria treatment +100% N fertilizer. The nitrate content is an important quality index of leafy vegetables; low nitrate content is associated with enhanced quality. Application of chemical fertilizers significantly increased nitrate accumulation compared to biofertilizers and control plants, so that the minimum nitrate accumulation content was observed in control plant and combined potassium and phosphorus solubilizing bacteria treatment + 100% N fertilizer (21.14 µg g-1FW), respectively.
Conclusion
With continuous development of economy and society, people pay an increasing attention to the quality of fruits and vegetables. Improving the crop yield means that attention must also be given to improving vegetables quality, resulting in chemical fertilizer nutrition problem. To conclude, our study suggested that after the control treatment (without using any chemical fertilizers), which had the lowest accumulation of nitrate, application of growth-promoting bacteria and mycorrhizal fungi in combination with nitrogen fertilizer caused lower nitrate accumulation than chemical fertilizers treatments. So, the use of combined and pure bacteria treatments and mycorrhizal fungus treatment can be used to improve the growth, quality and antioxidant properties and increase the concentration of nutrients and also reducing nitrate accumulation in lettuce.