Mohammadsadegh Sadeghi; Seyyed Jalal Tabatabaie; Hassan Bayat
Abstract
Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic) and essential elements (e.g. Fe, and Se). Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the ...
Read More
Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic) and essential elements (e.g. Fe, and Se). Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the human diet. The concentration of nitrate in plants is affected by species, fertilizer use, and growing conditions. Green leafy vegetables such as spinach, generally contain higher levels of nitrate than other foods. Nitrate ofplant tissueslevels are clearly related to both form and concentration of N fertilizers applied. Nitrogen fertilizers have been known as the major factors that influence nitrate content in vegetables. Ideally, the N fertility level must be managed to produce optimum crop yield without leading to excessive accumulation of nitrate in the harvested tissues.Usinghigh amounts ofN fertilizer produced higher yield with higher nitrate inleaves but the highest amount of nitrate was accumulated in the petioles.There are several plant species that may accumulate nitrate, including the Brassica plants, green cereal grains (barley, wheat, rye and maize), sorghum and Sudan grasses, corn, beets, rape, docks, sweet clover and nightshades. The presence of nitrate in vegetables, as in water and generally in other foods, is a serious threat to man’s health. Nitrate is relatively non-toxic, but approximately 5% of all ingested nitrate is converted in saliva and the gastrointestinal tract to the more toxic nitrite. This study was aimed to investigate theeffects of nitrogen and nutrient removal on nitrate accumulation and growth characteristics of spinach (Spinacia oleraceae L.).
Materials and Methods: A pot hydroponic experiment was carried out to evaluate the effect of different levels of nitrogen and nutrient removal (one week before harvest) on nitrate accumulation and growth characters. A factorial experiment based on completely randomized design was conducted with twolevels of removal (removal of nutrient one week before harvest) or not to remove and fourlevels of nitrogen (25, 50, 100 and 200 mg/l) with sixreplications. During the growing season in the greenhouse, temperature was fixed between 24-27 °C and photoperiod of 16 hours of light and 8 hours of darkness. The measured traits were root fresh and dry weight, shoot fresh and dry weight, Fv/Fm ratio, and chlorophyll index, number of leaf per plant, leaf area, nitrate and total nitrogen.
Results and Discussion: The results of this experiment showed that increasingnitrogen concentration from 25 to 200 mg/l increased shoot dry weight, number of leaves and leaf area, by 22.00, 7.26, 4.79 and 14.00 fold, respectively. Nitrogen also increased Fv/Fm and chlorophyll index. Nutrient removal in a week before harvest had no significant effect on fresh and dry weight of shoots and roots, number of leaves,leaf area, chlorophyll index and Fv/Fm. Increasing concentrations of nitrogen increased nitrate and total nitrogen in petiole while removing the nutrient solution in a week before harvest significantly decreased amounts of the above-mentioned traits. Nutrient solution removal is an appropriate strategy to reduce nitrate accumulation in spinach that has no effect on yield loss.
Conclusions: The results showed that increasing the concentration of nitrogen increased plant growth indicators such as shoot fresh and dry weight, root fresh and dry weight, leaf area and number of leaf per plants, so that the greatest increase was obtained from concentration of 200 mg/lit. Increasing the concentration of nitrogen enhanced nitrate and total nitrogen of petiole so that the highest concentration of nitrate and total nitrogen was observed in200 mg/lit nitrogen. Nutrient solution removal in a week before the harvest had a significant effect in reducing all traits but it decreased nitrate accumulation and total nitrogen of petiole significantly. At the end of the experiment, it was found that increasing the concentration of nitrogen increased nitrate concentrations and total nitrogen in the petioles while nutrient removal in a week before harvest reducedthe amount of leaf nitrate. Thereforethe removal ofnutrient solution is one of the strategies to reduce nitrate accumulation that had no effect on yield loss of crop. Based on the results from this research, nitrogen at a concentration of 200 mg/lit, with the removal of nutrient solution a week before harvest is recommended for growing in hydroponic culture of spinach.