Hoda Zare Mirakabad; Mohammad Farsi; Saeid Malekzadeh Shafaroudi; Mehrdad Iranshahi; Abdolreza Bagheri; Nasrin Moshtaghi
Abstract
Introduction: There is a growing body of the literature that recognizes the importance of ferutinin (C22H30O4) as one of the natural phytoestrogens with potency to treat osteoporosis and some kind of cancers. One of the greatest challenges is availability of ferutinin that is found just in root of some ...
Read More
Introduction: There is a growing body of the literature that recognizes the importance of ferutinin (C22H30O4) as one of the natural phytoestrogens with potency to treat osteoporosis and some kind of cancers. One of the greatest challenges is availability of ferutinin that is found just in root of some plants of the genus Ferula (Apiaceae), which is the reason of high price of it in global markets. Ferula ovina , an endemic plant of Iran, is known as one of the greatest sources of ferutinin. Unfortunately, access to ferutinin requires uprooting Ferula ovina especially older plants with more secondary metabolites content. There is a large volume of published studies describing the importance of tissue culture in propagation of endangered plants including secondary metabolites without possibility of chemical production and with deep dormancy seed exactly like the characters of F. ovina. Up to now, far too little attention has been paid to importance of tissue culture in accessing ferutinin without degrading the germplasm resources of it. The main aim of this study was to find an approach to access ferutinin associated F. ovina germplasm conservation.
Materials and Methods: In this experiment, the aerial parts of F. ovina were collected from Zoshk area (Mashhad, Iran). The plants were recognized as F. ovina by the Institute of Plant Sciences (Ferdowsi University of Mashhad). Tissue culture part was performed with preparation of sterilized media and explants. Therefore, the MS salts and vitamins was applied as basic medium, however MS salt was decreased to half strength for rooting of shoots. The node (root junction) explants were cultured on 24 callus induction/shooting media with different combinations of plant growth regulators (BAP, IAA, Kin, NAA and IBA). The shoots from direct and indirect regeneration were then transferred to media with different combinations of PGRs (BAP, IBA, IAA and NAA) in order to find rooting medium. Following these treatments, unbalanced ANOVA for analysis of data were performed using IBM SPSS 19. The final stage of the study comprised a TLC test for the purpose of finding ferutinin in samples which resulted from tissue culture. For this purpose, air-dried parts of samples were powdered and extraction was done after being in 3-5 times dichloromethane for 24hours. Then after optimizing solvent system was done with selection the ratio that presented bands in middle of TLC paper.
Results and Discussions: The results indicated that from 24 tested media, just 8 of them had potency of callus formation, but just L6 on MS medium containing 1 mg/l BAP and 1.5 mg/l IAA showed significant difference for percentage of callus induction at 5% level with compact green and the heaviest calluses. Although direct and indirect shoot regeneration was observed in this study, L9 on MS medium along with 1.5 mg/l IAA and 3 mg/l kin demonstrated significant difference for percentage of shooting at 5% level. Moreover, R6 on ½MS with 1 mg/l IBA showed significant difference for percentage of rooting of shoots at 5% level. The most surprising observation to emerge from the data comparison was L24 on half strength MS medium containing 0.2 mg/l BAP and 3 mg/l IBA with potency of callus induction, shooting and rooting of shoots. Regarding to the results of TLC test, ferutinin positive bands were observed in some samples.
Conclusions: The aim of the present research was to examine possibility of achieving ferutinin without need to uproot F. ovina because there are several problems to achieve this valuable sesquiterpene: 1) Chemical production of ferutinin is impossible, 2) It could be accessible just from roots of genus Ferula, 3) Propagation with seeds of F. ovina is limited because of morphophysiological dormancy of them, 4) Natural habitat of this plant in Iran is going to be destructed, 5) Access to natural habitat is difficult, 6) Time of access is limited with short growth season, 7) Maintaining F. ovina in greenhouse condition is impossible. The results of this research support the idea that producing ferutinin in Iran without any harmful effect on germplasm resources of F. ovina is possible. This is the first study of high scale commercial production of ferutinin which examine associations between tissue culture and ferutinin production.
Mojtaba Lotfi; Mohammad Farsi; Amin Mirshamsi Kakhki; Javad Janpoor
Abstract
Introduction: Because of their high protein and mineral contents and low fat, calories and cholesterol, edible mushrooms such as Agaricus bisporus are an important part of the people diet in many countries, but in Iran, the yield of this mushroom is less than the average of yield in the world. Phase ...
Read More
Introduction: Because of their high protein and mineral contents and low fat, calories and cholesterol, edible mushrooms such as Agaricus bisporus are an important part of the people diet in many countries, but in Iran, the yield of this mushroom is less than the average of yield in the world. Phase change from the vegetative to the reproductive stage and fruit body initiation of this mushroom depends on special physical, chemical and microbial properties of casing layer. Phase change is initiated by decreasing oftemperature and CO2 concentration and presence of some bacteria (such as Pseudomonas putida) in the casing layer. It is believed that P. putida may cause this process and increase the yield of A. bisporus by siderophore and hormone-like compounds secretion, decreasing the level of ethylene via ACC deaminase activity and dissolution of insoluble phosphate. The objective of this work was to identify P. putida isolates as growthpromoting bacteria isolated from A.bisporus casing soil and to evaluate their effect on mushroom yield.
Materials and Methods: In this study, 81 individual bacterial isolates were collected by screening the casing layer of 6 edible mushroom farms. Luria Bertani (LB) medium supplemented with sodium lauroyl sarcosine (SLS) and trimethoprim were used for isolation of Pseudomonas bacteria by plating serial dilutions of each soil sample. Finally, using species-specific primers, 33 isolates that identified as P. putida were selected and were used toinoculate
A. bisporuscasing layer. Inoculations were performed in a completely-randomized design with two replicates. The harvesting began when buttons were fully-grown (but not yet open), and the number of mushrooms and fresh (wet) weight of them were recorded after harvesting of each flush. In the next experiment IAA and siderophore production ability, ACC deaminase production capacity and ability of dissolving of insoluble phosphate in isolates and the correlation between these factors and number and fresh weight of mushroom were evaluated. Analysis of the data was carried out using JMP 8. Means were compared using Tukey’s test at p≤0.05.
Results and Discussion: The results of this study showed that the best stage for collecting P. putida is pinning, because the maximum number of identifiedP. putidawas recorded at this stage.Field experiment showed that different isolates have a significant effect on fresh weight and the number of mushrooms per kg compost compared to control (p≤0.05), so that the highest fresh weight observed in treatment of P27 and P13 isolates with 361.63 and 342.8 gr/kg compost respectively and the highest number of mushroom observed in treatment of P18 and P24 isolates with 21 and 20.83 mushroom per kg of compost,respectively. Interestingly, in this study, some isolates showed negative or no effect on mushroom yield which could be due to the interaction between bacteria and A. bisporus strain and/or complex conditions of casing layer. Other results showed that there is a positive and significant correlation between IAA production ability in P. putidaand fresh weight (r=0.58) and the number of mushrooms (r=0.50) in A. bisporus.Whereas there was no significant correlation between other factors and fresh weight and the number of mushrooms. IAA through promotion of cell elongation and differentiation increased mushroom growth and protein.This hormone is one of the needs of A.bisporus mushroom and it is very effective in growth and caused an increase in mushroom yield compared to other growth promoting factors.
Conclusions: In the present study, with the aim of investigation of the effect of P. putida on the yield of
A. bisporus and determining the most effective factor in this process, collectedisolatesinoculated to A. bisporuscasing layer and growth promoting factors in these isolates were evaluated. Results showed that the best stage for collecting P. putida is pinning. These bacteria havesignificant effects on fresh weight and the number of mushrooms.There is not significant correlation between other factors and fresh weight and the number of mushrooms. Based on the results, it could be said that the use of growth promoting bacteria in edible mushroom culturing could be resulted anincrease in mushroom yield and could be beneficial in production of healthy food. Finally, it could be said that P. putida isolates P27 and P13 may have the potential to act as a potential bio-fertilizer.
Javad Janpoor; Mohammad Farsi; Fatemeh Gholizade; Hamid Reza Pourianfar; Sharareh Rezaeian
Abstract
Introduction: King oyster mushroom (Pleurotus eryngii) belongs to Basidiomycota division, Agaricomycetes class and Pleurotaceae family. This mushroom generally grows on wood wastes of Apiaceae family. The Pleurotus eryngii is found in pastures, meadows, gardens and seldom in grassy forest clearings and ...
Read More
Introduction: King oyster mushroom (Pleurotus eryngii) belongs to Basidiomycota division, Agaricomycetes class and Pleurotaceae family. This mushroom generally grows on wood wastes of Apiaceae family. The Pleurotus eryngii is found in pastures, meadows, gardens and seldom in grassy forest clearings and hilly areas. The Pleurotus of the Umbellifers occupy an area in the Northern hemisphere between the 30 and 50º N. These species are mainly found in the subtropical regions of the Mediterranean, Central Europe, Russia, Ukraine, Central Asia and Iran. The P. eryngii sensulato is the only taxon within the genus, which grows in association with plants. P. eryngii has distinguishable characteristics such as coherent texture, unique form, favorable taste and high durability. Mushroom cultivation represents the only current economically viable biotechnology process for the conversion of waste plant residues from forests and agriculture. The species of these genera show much diversity in their adaptation the varying agro-climatic condition which makes more cultivated species than other mushrooms. Special ability of Pleurotus family is growing in lingocellulosic plant or agricultural wastes without needing to prepared compost and casing soil. Pleurotus is an efficient lignin- degrading mushroom and can grow and yield well on different types of lignocellulolosic materials. Type of substrates for mushroom growing depends on available plant or agricultural wastes. In Europe, wheat straw is used for mushroom growing; whereas in Asian South-East countries sawdust is more popular. Different materials for cultivating of P. eryngii have been suggested in different regions of the world; but a few studies have been done on suitability of various lignocellulosic affordable wastes for P. eryngii production in Iran. Therefore, the current study aims to evaluate effects of various locally available agro wastes on the growth characteristics of King oyster mushroom (P. eryngii).
Materials and Methods: Sawdust was utilized as the main substrate obtained from beech and populous trees (1:1). After being rinsed off in water and supplemented with calcium sulfate (3%) and calcium carbonate (3%), the substrate was filled in 20 × 40 cm polyethylene bags weighted to 800 grams. Sterilization was performed at 121 °C under pressure of 1.5 bars for two hours. A cultivated P. eryngii strain was then inoculated in the cooled material at a rate of 3% of dry/fresh substrate. The experiments were conducted based on a completely randomized design with five treatments and four replications, measuring mycelial growth (MG), number of fruiting bodies (NFB), mushroom weight, and biological efficiency (BE). AMG was measured in both test tubes and in petri plates in different pH levels (5.5, 7, and 8.5). Data were analyzed by JAMP 4.0, while graphs were drawn by Microsoft Excel 2007 and SigmaPlot 12.0 software.
Results and Discussion: The pH of 7 was found to be the best for obtaining maximal MG under all treatments after seven days. The highest amount of MG was obtained with substrate No. 1, while the least was observed in the culture of substrate No. 5. The substrates No. 1 and No. 5 generated the highest and lowest NFBs (p≤0.05). However, there was no significant difference (p≥0.05) in NFB between substrates No. 1 and 3 or between substrates No. 2, 4 and 5. The BE percentages obtained from experimental treatments No. 1, 2, 3, 4, and 5 were 64.81, 49.74, 59.22, 28.72, and 19.8, respectively. The comparison of means of different growth characteristics revealed that there was no significant difference between substrates No. 1 and 3 or between substrates No. 4 and 5 (p≥0.05).
Conclusion: In this time, only two species (Agaricus bisporus and P. ostreatus) are producing in Iran, whereas at least 10 species of edible mushrooms are cultivating in the world. King oyster mushroom has low cost of production and distinguishable characteristics. Therefore, this mushroom can be use as alternative for button mushroom (A. bisporus). Many kind of agricultural wastes are in use for mushroom cultivation. Understanding the effects of substrate materials on mushroom production will be very valuable. The average number of fruits and biological efficiency of treatment No.1 showed significant difference with other treatments. Hence, the treatment No. 1 could be used for commercial production of King oyster mushrooms in Iran. Growth rate of P. eryngii was very diverse, in respect to the determinate values of the environmental factors. On the basis of the average growth rate of the strains, we could conclude what are the optimum ecological values of the species, though these conclusions did not always coincide with the optimum values of the certain strains. However, more research needs to be done to obtain regular and homogeneous supply of this mushroom.
Marzieh Nourashrafeddin; Mohammad Farsi; Farajollah Shahriari; Javad Janpoor
Abstract
Introduction: Edible white button mushroom (Agaricusbisporus) is the most common edible mushroom in Iran and the world. The yield of this mushroom is less than the average of yield in the world because of strain degeneration and using strains with low yield. Most of the current hybrids are either identical ...
Read More
Introduction: Edible white button mushroom (Agaricusbisporus) is the most common edible mushroom in Iran and the world. The yield of this mushroom is less than the average of yield in the world because of strain degeneration and using strains with low yield. Most of the current hybrids are either identical or very similar to the first hybrids. Ongoing breeding programs are exploiting the variability in Agaricus germplasm to produce new varieties with better traits including higher yield and resistance to biotic and abiotic stresses. One of the breeding programs is F1 production from parental homokaryons crossing. These homokaryonsis were isolated among germinated basidiospores on the culture media. During the last decades, various molecular markers based on nucleic acid polymorphisms (such as Restriction Fragment Length Polymorphism, Random Amplification of Polymorphic DNA, Amplified fragment of Length Polymorphism, Inter Simple Sequence Repeat, Simple Sequence Repeat markers) have been used to differentiate homokaryons and heterokaryons. Microsatellites consist of short tandem repeat motifs distributed throughout the genome. Microsatellites are usually highly polymorphic due to a high degree of variation in the number of repeats among individuals. Microsatellite markers are multiallelic and co-dominant and thus tend to be more informative than other marker systems. Microsatellite markers have been widely developed in animals and plants and more recently in fungal species. The presence of microsatellites in the genome of A. bisporus was previously reported.
Materials and Methods: In this research, 160 germinated basidiospores were collected from commercially cultivated strain A15 and they were grown on compost extract agar (CEA). The mycelial growth rate of these160 isolates was evaluated at 25°C on CEA medium. 18 isolates with slow growing rate were selected from 160 isolates. In the next step, co-dominant SSR markers were used to homokaryons detection. Ten SSR primers showed polymorphism in parental control samples that were used to this experiment. The isolates were divided into two general homoallelic and heteroallelic groups and seven isolates from homoallellic group, which showed one-band pattern, characterized as putative homokaryon. Genetic similarity was calculated by NTSYSpc software version 2.02 e using UPGMA method. In the next step of experiment, the isolates (4 and 8) had minimum genetic similarity that was crossed to produce hybrid. In order to confirm the hybrid formation, PCR-SSR reaction with a primer (AbSSR 45) was performed.
Results and Discussions: Basidiospores were collected and allowed to germinate on CEA medium. Putative homokaryons were different in colony morphology and growth rate compared to the original heterokaryons. Mycelium samples showed different colony morphology including tomentose, apprised and strandy mycelium. Different growth rate can be affected by genetic factors in nucleus and mitoconderia. After four weeks, mycelium browning was appeared in liquid compost extract medium and created a disturbance in DNA extraction. To solve this problem, DNA was extracted from three-week old mycelium. Mycelium browning may cause by phenolic compounds produced by mycelium and enzymes that catalyze melanin biosynthesis reactions. Ten primers were used to homokaryon isolation. These primers were situated on the 9 linkage groups of 13 haploid chromosomes. Seven isolates were distinguished as putative homokaryon that showed one-band in all primers on the gel electrophoresis. The results of genetic similarity calculation showed that this index was variable between 0.17 to 0.67in 7 homokaryon isolates and the minimum genetic similarity (0.17) was observed between isolates 4 and 8. These two isolates were crossed and the result of this crossing was N1 hybrid. Also, other homokaryon isolates were crossed and mating incompatibility was observed in some of them. According to these observations, it is suggested that in future studies, in addition to genetic similarity, sexual incompatibility should also be considered. Hybrid N1 produced aerial mycelium and had higher growth rate in comparison to parental homokaryons and similar to heterokaryon control, had two-bands pattern. This two bands pattern indicates the presence of two non-sister nucleuse in each cells. Finally, the results showed that SSR marker can result to accurate detection of homokaryons.
Conclusions: The aim of the present study was screening homokaryon isolates of A.bisporus using SSR markers to obtain hybrid. Results showed that growth rate of homokaryon isolates were lower than the heterokaryons. Since, SSR markers were able to show high polymorphism in the isolates, thus it can be said that these markers are suitable to homokaryon screening. Final result of this study is N1 hybrid that can compare to commercially cultivated strains.
Mojgan Parvandi; Mohammad Farsi; Mohsen Ashrafi
Abstract
Introduction: The white button mushroom does not produce remarkable yield in the third flash. Nutritional deficiency and the inability of this mushroom to efficient use of compost are mentioned as its reasons. Basically, compost includes two major food components, lignocellulose and microbial biomass. ...
Read More
Introduction: The white button mushroom does not produce remarkable yield in the third flash. Nutritional deficiency and the inability of this mushroom to efficient use of compost are mentioned as its reasons. Basically, compost includes two major food components, lignocellulose and microbial biomass. But this microbial biomass provides just 10% of button mushroom food needs. According to research studies, differentenzymes in both white button mushroom and oyster mushroom are responsible for decomposition of lignin compounds in compost media, from begin of mycelium grows to the end of fruiting. Lacasse, manganese peroxidase, lignin peroxidase, glyoxal oxidase enzymes contribute to degradation of lignin compounds in degradation mushroom has proven by researchers however itis dependent on mushroom types. Manganese peroxidase enzyme (EC. 1.11.1.13) is an extracellular parser lignin enzyme that has a central peroxidase core. Manganese peroxidase enzyme oxidizesMn2+ to Mn3+ and then Mn3+ oxidizes phenolic structure to fonoxile radical. Produced Mn3+ is very active and makes complex by chelating organic acids that is produced by mushrooms such as oxalate or malate. Mn3+ ions become stable by helping of these chelates and it can penetrate through materials such as wood. On the other hand, in recent years, plant biotechnology provides new solutions for old problems such as use of microorganisms, particularly using bacteria for gene transfer and improvement of superlatives. For a sample of this method, Agrobacterium-mediated transformation system can be noted. In addition, the use of suitable promoters for heterologous genes expression in suitable hosts is an important strategy in functional biotechnology that has been raised in edible mushroom genetic engineering. The lack of efficient and sufficient use of compost, low power of white button mushroom in competition with other rivals, lack of yield per area unit due to production costs, pests and diseases, low flexibility and adaptability with environmental conditions changes are some of the problems that the mushroom reformers are faced. Unlike the great efforts made by researchers, conventional breeding techniques to produce the A. bisporus mushroom only have been led to produce a few new races. Therefore, todays some problems associated with traditional methods of breeding of edible mushrooms, including the need to provide races that have desired characteristics, the traditional method performance tests and low chances of success in the transfer of important agronomic characteristics such as functionality and disease resistance. So, they almost have been replaced with new biotechnology methods. Anexample of this method is to manipulateproperties transformation for the particular purpose. Modification of both expression or type of lignin degrading enzyme are possible solutions to deal with this problem, but these are not applicable or are difficult to be done with traditional breeding programs. In recent years, gene transformation mediated with Agrobacterium routinely is used for gene transformation to mushrooms and is proposed as a method for removing limitations of white button mushroom breeding.
Materials and Methods: In this research, the oyster mushroom strain Florida was used as the source of manganese peroxidase (mnp) gene and white button mushroom strain 737 gill and cap tissue were used as transformation host. Agrobacterium strain LBA4404 harbors p133H88-FM plasmid thatcontainsmnp gene of oyster mushroom and also hph gene under control of gpdII promoter of the button white mushroom strain IM008 was used as a transformer. Selection medium containing 30 mg/ml Hygromycin B and was used for selecting transformed explants. To confirm transformation, PCR with specific primers of mnp and hph genes was performed on genomic DNA of selected colonies.
Results and Discussion: Results showed the gill tissue explants, with transformation rate 5%, have a better response to applied transformation method than cap tissue explants, with transformation rate zero percent. As expected, polymerase chain reaction with specific primers ofhph and mnp genes amplified 1049 and 1086 bp fragments and verified the transformation of mycelium's grown on selection medium. It seems that Bacterial strain and also used plasmid were one of the responses for observed low rate transformation which is in accordance with leach and co-workers study. Finally, we could propose that cap tissue is more suitable for further gene transformation of this mushroombecause of high transformation rate of cap tissue.
Mohammad Javad Ahmadi Lahijani; Mohammad Farsi
Abstract
Introduction: Among edible mushrooms, white button mushroom is the most cultivated one around the world. Mono-spores diversity in terms of growth rate, colony type, yield and etc. is used for intra strain genetic improvement. High yielding isolates with filamentous mycelium type are screened and used ...
Read More
Introduction: Among edible mushrooms, white button mushroom is the most cultivated one around the world. Mono-spores diversity in terms of growth rate, colony type, yield and etc. is used for intra strain genetic improvement. High yielding isolates with filamentous mycelium type are screened and used for spawn production (Farsi and Gordan, 2002). Success in mushroom production largely depends on the quality of spawn produced in sterile conditions (Sanchez, 2010). Farsi and Gordan, (2004) reported that colony shape and mycelium growth type are very important factors in screening isolates in terms of mycelium growth rate and yield. To screen isolates based on their mycelium growth, solid media are among the most suitable ones (Griffin, 1994). In a study conducted to evaluate mycelium growth rate of six Morchella species on different media, PDA and MEA were known as the best ones (Kalmis and Kalyoncu, 2008). The present study was conducted in order to evaluate mycelium growth rate and yield of white button mushroom isolates in solid medium, spawn and compost media.
Materials and methods: Eighteen isolates of white button mushroom were compared on PDA (Potato Dextrose Agar), CYM (Complete Yeast Medium), spawn and compost media based on mycelium growth rate, type and class growth and yield at the mushroom research center of Faculty of Agriculture, Ferdowsi University of Mashhad, in 2014. A piece of mycelium of each isolate was placed in the center of each petri dish and was kept in 23±1°C, and the radial growth rate of mycelium was measured as two perpendicular diameters in three consecutive weeks. Mycelium growth rate on spawn and compost media was measured based on the percentage of surface coverage during the 15 consecutive days. Yield of each isolate was measured by daily harvesting of mushrooms during 35 days of experiment. Analysis of variance and means comparison of the variables were carried out using SAS software. Means analysis was performed using LSD test at 5% significance level.
Results and discussion: There were significant differences among isolates based on mycelium growth rate and yield. In PDA medium, 2200 isolate showed the fastest mycelium growth rate with 1.9 mm.day-1 and final colony diameter of 8.1 cm. were This isolate also showed the fastest mycelium growth rate on CYM medium and covering the spawn and compost media surfaces, and produced the highest yield along with A15a isolate (A15a and 2200 with 22.1 and 19.4 kg.m-2, respectively). Magnum d with mycelium growth rate of 0.7 mm.day-1 and final colony diameter of 3.1 cm showed the slowest mycelium growth rate. On average, 75% of isolates were grouped in slow mycelium growth rate class and 25% were placed in fast mycelium growth rate class. Isolates A15a, 2200, A15, M7219 and F64d showed fast mycelium growth rate. All of the isolates showed filamentous mycelium growth type and no abnormal mycelium growth type was observed. Isolate A15a with 50% coverage of compost surface during the first 5 days and 90% during the 15 days showed the fastest mycelium growth rate on this medium, followed by isolates F64d, 2200 and A15a. Normal mycelium growth rate on compost medium varied from 6-8 to sometimes 10-12 mm.day-1 (Farsi and Pooyanfar, 2011). There was a high positive correlation between mycelium growth rate and the yield component, so that isolates with faster mycelium growth rate produced higher yield. Farsi and Gordan, (2001) also reported significant positive correlation between filamentous mycelium type and yield, so that isolates with filamentous mycelium growth type and high mycelium growth rate produced higher yield. Faster mycelium growth rate is considered as a desire characteristic in mushroom cultivation due to the reduction of contamination risk of other micro-organisms (Oie, 2003).
Conclusion: There was a high significant difference among white button mushroom isolates in terms of mycelium growth rate and yield. Isolates with faster mycelium growth rate on solid medium produced higher yield. A high positive correlation was observed between mycelium growth rate on CYM and compost media, so it could be used as an appropriate medium for comparison of mycelium growth rate in vitro. As comparison of strain yield is time consuming and difficult, screening based on their growth rate on CYM is recommended.
Rasul Najib; Mohammad Farsi; Amin Mirshamsi Kakhki; Saeid Reza Vessal
Abstract
Introduction: Homozygous doubled haploid lines production through induction of androgenesis is a promising method to accelerate the classical breeding program. However, this technology is relatively under - developed in tomato so that improvements in methodology are required. Tomato (Lycopersicon esculentum ...
Read More
Introduction: Homozygous doubled haploid lines production through induction of androgenesis is a promising method to accelerate the classical breeding program. However, this technology is relatively under - developed in tomato so that improvements in methodology are required. Tomato (Lycopersicon esculentum Mill) is one of the most important vegetables which in addition of it is importance as a food, is utilized as a model plant for cytological and cytogenetic studies. Tomato breeding programs are often based on the production and selection of hybrid plants. To produce hybrid plants and application of features that is needed to breed pure lines with high specific combining abilities, new technologies such as doubled haploid production through induction of androgenesis can be an effective strategy to provide pure lines in tomato. One of the critical factors for induction of androgenesis in tomato is to use of microspores being in appropriate developmental stage. Cytological examination is one of the most accurate methods for determining the correct stage of microspore development. In this study, a number of characteristics were evaluated including the cytological properties of normal microspores development and pollen grains as well as the relationship between length of flower bud and anther length.
Materials and Methods: In this study, four varieties of tomato including Mobil - Netherlands, Baker, U. S. Agriseed and Khoram were chosen. To determine the appropriate stage of microspore development for Anther culture, cytologycal studies were accomplished at different size length of flower buds (2. 0 - 7. 9 mm). Collection of flower buds to conduct experiments was done during 10 - 40 days after flowering for each cultivar. Flower buds collected early in the morning hours and within the containers closed - door ice were transported to the laboratory. To investigate the correlation between the length of flower bud and anther length, randomly selected from within each group of three flower buds, and their length was measurement. Then anthers were removed and anther length was measured for each flower buds. A total of 240 anthers, sixty anthers from each cultivar, were examined by microscope. In order to examine the development stage of microspores and pollen grains, flower buds at different length (5 - 10 mm) were calculated. Flower buds were incubated at 4 oC for 15 minutes and stained in acetocarmin %4 solution and squashed. In order to determine the relative frequency of each stage of the development of microspore and pollen, microspores at least 100 randomly in different parts of prepared slides were counted. Average relative frequency of different stages, meiosis, tetrads, microspores young and old and young and mature pollen grains with a standard deviation was calculated. Cytological studies were accomplished by microscopy research Olympus B X 51 and photographed by a digital camera D P 70. All analysis was conducted using statistical software JMP 8.
Results and Discussion: The time of anthers collection for the induction of haploid is very crucial. In order to determine the appropriate steps to carry out pre - treatment induced changes in the normal development of microspores embryogenesis and cytological properties in various stages of division and development should be monitored. The results showed that there was a significant correlation between the length of flower bud and the anther length (r = 0.8, P
Masoud Azimi; Majid Azizi; Mohammad Farsi; Seyyed Hossein Nemati
Abstract
Introduction: Nowadays, mushroom and fungi are one of the most promising organisms which are used in biotechnology research (industry, medicine and agriculture). In the meantime, medicinal mushroom (mostly consumed as edible and medicinal products) have become a valuable biological resourcesin the pharmaceutical ...
Read More
Introduction: Nowadays, mushroom and fungi are one of the most promising organisms which are used in biotechnology research (industry, medicine and agriculture). In the meantime, medicinal mushroom (mostly consumed as edible and medicinal products) have become a valuable biological resourcesin the pharmaceutical industry. Ganoderma the most legendary species of fungi in China with a long history dating back more than two thousand years.Ganodermalucidum (Fr.) Karst isa species belonging to the order of Aphyllophorales and family Basidiomycetes. The mushroom only growth on two or three types of trees among 10,000 known trees in the world and therefore is very rare. Ganoderma fruiting bodies and spores contain about 400 different bioactive compounds, which mainly includeTriterpenes, polysaccharides, nucleotides, sterols, steroids, fatty acids, proteins andpeptides. The mushroom polysaccharides, in addition to cancer treatment have showed antiviral properties, anti-inflammatory, anti-diabetic, anti-hypertensive and prevent blood clotting. Tavana et al (1) in the evaluation of the use of some agricultural and forest wastes material for production of the mushroom stated that the residue are suitable as a helpful supplements for the activity. Gonzalez-Matute et al (11) used sunflower seed shell after oil extraction as a substrate. They concluded that the sunflower seed shell can be used as the main energy source in the substrate to grow the mushroom. There are different agricultural wastematerials which are good sources for growing mushroom in our country. The use of agricultural residues has attracted much attention in recent years. To the best of our knowledge there are a few published studieson the production of Ganoderma in the field condition. This study was performed on Reishi mushroom (Ganodermalucidum) to investigate the effects of different agricultural wastes on some morphological characteristics (growth rate, fresh weight and dry weight of mycelia, biological yield andcrude polysaccharide content) and polysaccharide contents of fruits.
Material and Methods:The main portion of the medium for production of Ganodermalucidum was wood chips as 5-10 mm long that supplemented with different agricultural wastes included black seed waste, tea waste, hazelnut waste, coconut waste, almond wasteand sesame waste, with two types of bran (wheat and rice). The statistical design was afactorial experiment on the basis of completely randomized design with threereplications. The treatment were included
Wood chips (80 percent) + black seed waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + tea waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + sesame waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + hazelnut waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + coconut waste (10 percent) + rice bran (10 percent)
Wood chips (80 percent) + black seed waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + almond waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + sesame waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + hazelnut waste (10 percent) + wheat bran (10 percent)
Wood chips (80 percent) + coconut waste (10 percent) + wheat bran (10 percent)
At first Wood chips soaked in water for 2 days until the their moisture reached60-65 then the other agricultural waste materials added on the basis of the treatments and the autoclavable propylene bags filledwith the mixture and autoclaved for 2 hours at 121ºC. After cooling, all bags inoculated with wheat spawn of the Ganodermalucidium and the bags putunderdark condition in growth chamber with 85-95% humidity at 30ºC. After full colonization of the bags, they transfer to the light condition (200-500 Lux) at 25ºC until primordial formation. Then the light increased to 500-700 Lux until fruiting body formation.
Results and Discussion: The results of analysis of variance showed that the use of these agricultural wastes had a significant effect (P≤0.01) on growth rate, fresh weight, dry weight of myceliumand biological yield. The highest growth rate of mycelia (on the basis of days after inoculation to medium colonized completely) was detected in media enriched with tea waste, hazelnut waste, coconut waste and almond waste (15.33, 16.67, 15.33 and 14.33 days, respectively). The lowest growth rate of mycelium was detected in media enriched with black seed waste (30.33 days). The substrate supplemented with almond waste produced the highest amount of fresh fruit weight (31 g) and the lowest fresh fruit weight (15.74 g) was detected under coconut waste treatment. The highest amount of fruit dry weight (6.51 g) observed under the almond waste treatment and the lowest one observed under the coconut waste treatment (3.75 g). The media supplemented with almond wastes produced the highest biological yield (7.75%), but tea waste, hazelnut waste and coconut waste treatments had the lowest biological yield (4.75, 5.32, 5.27 and 3.93 percent, respectively) without significant differences (P≤0.01).
Rasul Najib; Mohammad Farsi; Amin Mirshamsi Kakhki; Saeid Reza Vessal
Abstract
Introduction Tomato (Lycopersicon esculentum Mill) is one of the most important vegetables which in addition of its importance as a food, is utilized as a model plant for cytological and cytogenetic studies. Tomato breeding programs are often based on the production and selection of hybrid plants. Producing ...
Read More
Introduction Tomato (Lycopersicon esculentum Mill) is one of the most important vegetables which in addition of its importance as a food, is utilized as a model plant for cytological and cytogenetic studies. Tomato breeding programs are often based on the production and selection of hybrid plants. Producing hybrid plants and application of features that is needed to breed pure lines with high specific combining abilities, is highly required.New technologies such as doubled haploid can be an effective strategy to provide pure lines in tomato. Generation of homozygous doubled haploid lines through induction of androgenesis is a promising alternative method to the classical breeding programs. However, this technology is poorly developed in tomato so that some improvements in methodology are required. Genotype and stages of microspore development are critical factors for induction of androgenesis in tomato. Among them, the genotype is more important than other factors. The purpose of this study was to investigate the possibility of callus induction from anthers in some tomato genotypes.
Materials and Methods: In order to investigate the androgenic response and callus induction through anther culture in tomato, four varieties including Mobil-Netherlands, Baker, U. S. Agriseed and Khoram were chosen. To determine the appropriate stage of microspore development for anther culture, cytologycal studies were accomplished at different size length of flower buds (2-7.9 mm). Flower buds were incubated at 4oC for 15 minutes and stained in acetocarmin %4 solution. Based on cytological studies in four tested cultivars, flower buds with size length 4-4.9 mm were chosen, as they had the highest frequency of meiotic microspores to microspores mid uninucleate. Pretreatments were colchicine solution (250 mgr/L) at 4 °C for 48 h. The anthers were cultured on MS medium containing 2 mgr/L IAA and 1 mgr/L 2ip. All changes in frequency of callus induction and diameter of callus were recorded for eightweeks. Diameter of callus was measured using a microscope equipped with a camera and Dino Capture 2.0 software version 4.1. Cytological studies were accomplished by microscopy research Olympus BX51 and photographed by a digital camera DP70. To determine the presence or absence of a significant difference between the observed proportions a chi-square test was used. All analysiswas conducted using statistical software JMP 8. Charts were providedusing Excel software.
Results and Discussion: Anther development stage is one of the factors determining the success of anther culture in the production of embryos. The results of most studies showed that the stage between meiosis and mid-stage of unicellular microspores is optimum to androgenesis response in tomatoes. Since microspores in the anthers are at various stages of development, to determine the appropriate size of flower buds, the relative frequency of each of the stages of development should be understood. Based on the obtained results, in all study cultivars, flower buds with a length of 4-4.9 mm (Containing anthers with an approximate length of 3-4 mm), due to having the highest frequency of meiotic and unicellular microspores, can be used for anther culture. Study of deformation and induced callus in this experiment showed that both the Baker and U. S. Agriseeds did not show callus induction. Anthers of varieties over three weeks after culture gradually became yellowish-brown and in the fourth week of the increased frequency of haploid were brown. After six weeks of culture, all anthers in both became brown and died. The anthers of the varieties, Mobil-Netherlands and Khoram, inflated at the second to fourth week, anther wall was eventually broken and callus was observed. At third week the frequency of deformed anthers were gradually increased. Four weeks after culture, the frequency of callus induction reduced and after five weeks of callus induction no change in frequencyof callus induction was observed. The results showed that frequency of callus induction was significantly different among genotypes (P
Saeid Nadi; Mohammad Farsi; Seyyed Hossein Nemati; Hossein Arouiee; Gholamhossein Davarnejad
Abstract
In this study, the recovery of casing soil consumed in the white button mushroom was investigated. Casing soil is used as a layer on compost (culture medium) to a diameter of 3-5to stimulate fruiting on the white button mushroom(Agaricus bisporus) . The expense od casing soil is about 30 percent of production ...
Read More
In this study, the recovery of casing soil consumed in the white button mushroom was investigated. Casing soil is used as a layer on compost (culture medium) to a diameter of 3-5to stimulate fruiting on the white button mushroom(Agaricus bisporus) . The expense od casing soil is about 30 percent of production costs. In the first step of this experiment, in order to separate casing soil from compost easily (at the end of production period),by distribution of a mesh with pores of 5 mm between compost and casing soil in the casing step, which we could separate and easily collect casing soil at the end. The most important altering factor between chemical and physical properties of recycling casing soil, is EC that was reduced by leaching process. An experiment was conducted based on split plot design with two factors and three replications. The main plots were treated with two levels of with and without a plastic mesh. Percentages of recycled soils in combination with fresh casing soil applied in sub plots. Subplot included 100%, 75%, 50%, 25% and 0% of recycled soil. Three traits included fruit yield, fruit average weight and fruit number were analyzed using SAS software. None of the traits showed significant differences. No significant difference was obsereved between with and without plastic mesh. Further more no difference was observed between different percentages of recycled soil mixed with fresh peat. It is thus concluded that using recycled casing soil in production of the white button mushroom is possible and profitable.
Mohsen Alipoor; Mohammad Farsi; Amin Mirshamsi Kakhki
Abstract
The white button mushroom, Agaricus bisporus, is a commercially important cultivated filamentous fungus. Strain stability is of great importance to both spawn producers and mushroom growers. Mushroom strains are usually propagated via vegetative method on nutritionally rich substrates. Abnormal growth ...
Read More
The white button mushroom, Agaricus bisporus, is a commercially important cultivated filamentous fungus. Strain stability is of great importance to both spawn producers and mushroom growers. Mushroom strains are usually propagated via vegetative method on nutritionally rich substrates. Abnormal growth and poor yield are the consequences of this replication method. The reason for this phenomenon is still unknown. The use of molecular markers is one way of assessing and understanding the genetic changes. In this study, for the first time we reported the application of amplified fragment length polymorphism (AFLP) marker to assess genetic variation in single spore progeny and to assist selection of superior cultivars based upon the use of monosporous cultures of A. bisporus commercial strain, Holland737. We isolated 30 single spores that differed in growth rate, productivity and AFLP inheritance pattern. Nine EcoRI / TaqI primer combinations identified a total of 353 AFLP bands from 19 single-spore isolates, of which 53 were polymorphic. Results showed that the single spore selection is an effective method for strain improvement in A. bisporus, so that two isolates averagely performed 47% increased yield over the maternal strain and AFLP showed enough sensitivity to detect polymorphisms among single spore isolates.
Askar Ghani; Seyyed Hossein Nemati; Majid Azizi; Mohammad Jamal Sahar khiz; Mohammad Farsi
Abstract
A pot experiment was conducted to evaluate the extract biochemical variations among 25 spearmint population. The experiment was a randomized complete design (RCD) with 25 treatments (population) and three replications. For this purpose, three rhizomes with 5 cm length were selected and planted in each ...
Read More
A pot experiment was conducted to evaluate the extract biochemical variations among 25 spearmint population. The experiment was a randomized complete design (RCD) with 25 treatments (population) and three replications. For this purpose, three rhizomes with 5 cm length were selected and planted in each pot. All pots were kept out side. The plant samples of all treatments were harvested at full flowering stage and the most important extract biochemical factors such as chlorophyll a, b and total, carotenoide, flavone and flavonol, total flavonoide, total phenolic compound, antioxidant activity, and carbohydrate content were measured. Moreover, all characteristics of studied population were subjected to cluster analysis and correlation between factors was determined. There were significant differences among population in all studied factors. The highest and lowest chlorophyll contents (35.77 and 10.5 mg/g FW) were obtained in Fars- Khafr 2 and Mazandaran-Nour population, respectively. Among studied population, Isfahan 2, Mazandaran-Qaemshahr, Mazandaran-Nour and Yasouj were superior in extract biochemical valuable properties like antioxidant activity, total phenolic compounds, total flavonoides, and total carbohydrates. Also, some population of Fars province constituted more carotenoide and chlorophyll contents and were superior to others. Furthermore, a positive correlation was detected between antioxidant activity, phenolic compound, and total flavonoides.
Raheleh Khatibzadeh; Majid Azizi; Hossein Arouiee; Mohammad Farsi
Abstract
To protect and multiply important and rare plant resources, in vitro culture serves as a more efficient alternative to traditional propagation approaches. Levisticum officinale Koch. a member of Apiaceae is an important, endangered and neglected species in Iran, which has been shown to have diuretic, ...
Read More
To protect and multiply important and rare plant resources, in vitro culture serves as a more efficient alternative to traditional propagation approaches. Levisticum officinale Koch. a member of Apiaceae is an important, endangered and neglected species in Iran, which has been shown to have diuretic, spasmolytic and carminative effects. In order to supply enough plant materials for micro-propagation of this herb and study effects of different methods of disinfection and stratification on in vitro seed germination, a factorial experiment laid out in a completely randomized design was set out to establish sterile plants out of seed culture. It was concluded that a pre-chilling treatment for 3 months resulted in maximum percent of germination (92%) and the largest germination rate. The best superficial sterilization protocol was proofed to be soaking in 70% (v:v) ethanol for 30 s and then, using of 2% (v:v) dilution of NaOCl for 15 min, followed by 3 rinses in sterile distilled water.
Shirin Rezaei; Amir Lakzian; Mohammad Farsi; Mahboobeh Abolhassani-Zeraatkar; Gholamhossein Haghjnia
Abstract
One of the most important steps of Agaricus bisporus production is casing. In this step a layer of soil is added on top of compost. Peat is the most suitable casing soil for A. bisporus production. The lack of peat in Iran is one of the major problems in A. bisporus production for mushroom producers. ...
Read More
One of the most important steps of Agaricus bisporus production is casing. In this step a layer of soil is added on top of compost. Peat is the most suitable casing soil for A. bisporus production. The lack of peat in Iran is one of the major problems in A. bisporus production for mushroom producers. It seems that peat can be replaced by Spent Mushroom Compost (SMC). In order to study the possibility of peat replacement, a factorial experiment was conducted in a completely randomized design layout with two replications. The experimental factors consisted of Spent Mushroom Compost with two levels (one and two years old), leaching with three levels (one (L1), two (L2) and three (L3) times) and EDTA with two levels (without EDTA (E1) and with EDTA, 0.3 M (E2)) and different casing soil with four levels (SMC+loam, SMC+Azolla, SMC+Peat (1:1) and Peat). The experiment was carried out in the Mushroom Production Center of Agricultural College, Ferdowsi University of Mashhad. The results showed that the highest mushroom yield was obtained in peat treatment (24%). The average of yield in SMC+Peat treatment was 11.78%. The Diameter of mushroom cap in SMC+Peat treatment was 44.1 mm. The lowest yield (8.1%) and diameter of A. bisporus cap (37 mm) was observed in SMC+Azolla treatment. The results also showed that the EDTA had a negative effect on yield (44.3 %) and diameter of the mushroom cap.
Mohsen Mahmoodnia; Mohammad Farsi; Seyyed Hassan Marashi; Parviz Ebadi
Abstract
Investigation of the cultivated tomato plant as a plant ideal system along with the drought resistant wild species can be useful to a better understanding of the mechanisms of drought resistance and improvement of tomato plants. To investigate the effect of drought stress on leaf Relative Water Content ...
Read More
Investigation of the cultivated tomato plant as a plant ideal system along with the drought resistant wild species can be useful to a better understanding of the mechanisms of drought resistance and improvement of tomato plants. To investigate the effect of drought stress on leaf Relative Water Content (RWC), electrolyte leakage and photosynthetic parameters in four species of tomato (a cultivated species and three wild species) at two levels of irrigation (field capacity and 40% field capacity) and four time periods (before stress, 10 days after stress, 20 days after stress and recovery) a factorial experiment based on Completely Randomized Design (CRD) was used. Among the tested species, cultivated species showed the highest decrease in RWC. Electrolyte leakage was significantly increased in stress conditions. The rate of photosynthesis and chlorophyll fluorescence yield in the two drought resistant wild species increased in stress conditions unlike of cultivated species, probably because of more adaptation of these species with low water conditions. The results showed that each of these species according to their own mechanism for dealing with drought stress, in one or more properties are superior to other species. it is therefore suggested that the different species for future studies (molecular) with different characteristics to be used.
Zahra Nemati; Ali Tehranifar; Mohammad Farsi; Amin Mirshamsi Kakhki; Seyyed Hossein Nemati
Abstract
Pomegranate (Punica granatum L. that one Punicaceae) is one of the important economical and commercial horticultural plants cultivated in arid and semiarid parts of Iran. Also, due to the long history of pomegranate cultivation in Iran, genotypes from different regions with obvious similarities in appearance ...
Read More
Pomegranate (Punica granatum L. that one Punicaceae) is one of the important economical and commercial horticultural plants cultivated in arid and semiarid parts of Iran. Also, due to the long history of pomegranate cultivation in Iran, genotypes from different regions with obvious similarities in appearance but with different names can be observed. Thus, the precise discrimination between .genotypes is essential for effective management for future pomegranate breeding programs. In this study, AFLP markers based on seven primer combinations (EcoRI/Tru1I) were used to evaluate genetic variation and Phylogenic relationship among 31 different .genotypes of native pomegranate belonging to seven of Iran provinces. According to the cluster analysis, a relatively low genetic diversity was observed across the .genotypes studied. Also, the results showed that the clustering of the cultivars didn’t concerne to morphological traits. The derived dendrogram proved that .genotypes are clustered independently from their geographical origin and their denomination. Heterozygosity index, Principal co-ordinates analysis (PCoA), Gst Index and analysis of molecular variance (AMOVA) revealed noticeable similarity among studied populations and observed variation within populations was very low and near zero. The high level of morphological traits diversity in Iranian pomegranate and low level of polymorphism in genome organization of these .genotypes determined by AFLP markers may be related to the somatic propagation and also type of pomegranate pollination.
Seyyed Hosein Nemati; Ali Akbar Esmaili; Gholamhossein Davarynejad; Mohammad Farsi
Abstract
Abstract
The quantative and qualitative yield comparison of three cucumber F1 cultivars including' Sina, Amyral, and Negin was evaluated using 3×3×3 factorial experimental design with six replication. Three types of pruning treatments were applied; cutting down all branches on main stem (b1), leaving ...
Read More
Abstract
The quantative and qualitative yield comparison of three cucumber F1 cultivars including' Sina, Amyral, and Negin was evaluated using 3×3×3 factorial experimental design with six replication. Three types of pruning treatments were applied; cutting down all branches on main stem (b1), leaving one node and the leaf next to it on all branches (b2), leaving two node and the leaf next to them on all branches (b3) and three plant spacing levels (a1: 1.8 plant / m², a2: 2.1 plant / m², a3: 2.4 plant / m²) were studied. The effect of different pruning treatment on yield related traits was highly significant. The average yield with different plant density showed highly significant differences. The interactive effect of pruning and cultivars on yield related traits was also significant. The highest yield per m² and production per plant were found in third pruning treatment (leaving two nodes and the leaf next to them on all branches) with 16.2 kg/m² and 7.75 kg /pl., respectively. On the other hand, spacing of 2.4 plant /m² was the highest yield of 15.6 kg/m². The effect of cultivar on all studied traits in this experiment was significant differences except for number of diformed fruits per plant. The resalt showed that negin cultivar produced the highest yield per m² and production per plant with 15.2 kg/m² and 7.27 kg/pl. respectively. The number of diformed fruits was higher on lateral branches than those on main stems. The fruit on main stems were also found heavier than those on lateral branches.
Keywords: Greenhouse cucumber, Pruning, Plant spacing, Cultivar, Yield
Mohammad Farsi; Parisa Taheri; Asadollah Kordiani
Abstract
Abstract
In composting process for the white button mushroom, in addition to chemical reactions of complex compounds present in straw, which provide simple compounds for the mushroom, thermophilic microorganisms, having accumulated N2 and inorganic matter during the composting processes, offer the microbial ...
Read More
Abstract
In composting process for the white button mushroom, in addition to chemical reactions of complex compounds present in straw, which provide simple compounds for the mushroom, thermophilic microorganisms, having accumulated N2 and inorganic matter during the composting processes, offer the microbial biomass as a secondary nutritional source to be consumed by the fungus Agaricus bisporus. This work was aiming at identifying the thermophilic fungi promoting A. bisporus' mycelia growth. Theremophilic fungi were isolated from mushroom compost, and pre-colonized separately on sterile compost in test tubes as well as on compost extract – glucose agar plates; and beneficial effect of each fungus was evaluated regarding growth promotion and extension rate stimulation of Agaricus bisporus mycelia. Identification of the fungi was achieved by morphological methods and molecular means (i.e. the universal primers ITS1 and ITS4 used for amplification of the ITS1, 5.8S and ITS2 region of the rDNA repeat unit). The thermophilic fungi were identified as type 2 isolates of Scytalidium thermophilumm. The results indicated a significant increase in mycelial growth of Agaricus bisporus, compared to the control, on both pre-colonized sterile compost in test tubes and compost extract – glucose agar medium (p < 0.05). It was observed that Agaricus bisporus mycelia feed on Scytalidium thermophilumm. Providing appropriate condition for growth of Scytalidium thermophilumm will increase the yield of Agaricus bisporus considerably.
Keywords: Agaricus bisporus, Scytalidium thermophilium, Composting, microbial biomass, ITS1, ITS4
Leila Razeghi; Majid Azizi; Mohammad Farsi; Shadi Shahtahmasbi
Abstract
Abstract
Shiitake mushroom [Lentinulus edodes(Berk) Singer/Pegler] has the third production class among the most important edible mushrooms. For a long time this mushroom has draw attention due to its unique flavor and taste and also therapeutic properties. The research conducted to optimizing the environmental ...
Read More
Abstract
Shiitake mushroom [Lentinulus edodes(Berk) Singer/Pegler] has the third production class among the most important edible mushrooms. For a long time this mushroom has draw attention due to its unique flavor and taste and also therapeutic properties. The research conducted to optimizing the environmental conditions for shiitake production. In the first experiment the effect of four medium types in solid form, three medium pH (4.5, 5.5 and 6.5) and two temperatures regimes (25 and 27 oC) were evaluated on mycelium radial growth of the mushroom. In second experiment the effect of medium types and pH was evaluated on mycelium yield in liquid form at 25 oC. The experimental design in both media was factorial on the basis of completely randomized design with 4 replications.The obtained results of the first experiment showed that medium type, pH and temperature significantly affect mycelium growth rate at p≤0.01. Interaction between medium×pH, temperature×medium and pH×temperature also was significant at p≤0.01. The highest growth rate (8.548mm/day) was detected on 1 and 2 “hand making” media and the lowest one (6.201mm/day) was observed on 3 hand making media. The higher temperature (27 0C) cause the lower the mycelium growth rate. Increasing the medium pH from 4.5 to 6.5 also decreased mycelium growth rate and the highest growth rate was observed at pH=4.5. In second experiment (liquid medium), medium type and pH also affect mycelium yield significantly (p≤0.05). The highest mycelium yield was belong to hand making media and on the contrary with first experiment, the best mycelium yield was obtained on pH=5.5.
Key words: Shiitake, Mycelium growth rate, Mycelium filamentous growth, Mycelium yield
Somayeh Heydari; Seyyed Hassan Marashi; Mohammad Farsi; Amin Mirshamsi
Abstract
Abstract
Seedless barberry (Berberis vulgaris L. var. asperma) is one of the few crops that is cultured only in Iran and southern parts of Khorasan provinces. The Origin of this variety is unknown and there has not been any study aiming to identify phylogenic relationships of this plant with other species ...
Read More
Abstract
Seedless barberry (Berberis vulgaris L. var. asperma) is one of the few crops that is cultured only in Iran and southern parts of Khorasan provinces. The Origin of this variety is unknown and there has not been any study aiming to identify phylogenic relationships of this plant with other species existing in Iran. In this study, AFLP markers based on four primer combinations (EcoRI/Tru1I) were used to evaluate genetic variation and Phylogenic relationship among 30 different samples of wild and cultured barberry belonging to Khorasan provinces namely: Shomali (north), Razavi and Jonubi (south), together with 2 species of ornamental barberry and one sample Mahonia aquifolium. Data resulted from cluster analysis, showed that these two genera (Berberis and Mahonia) form 2 completely distinct groups with a significant genetic distance. These results can clarify the ambiguity of separation procedure between Mahonia and Berberis genera. Heterozygosity index, Principal co-ordinates analysis (PCoA), Fst Index and analysis of molecular variance (AMOVA) revealed significant difference among wild barberry populations existing in Khorasan provinces; so that, as was expected, observed variation within cultured barberry population was very low and near zero. The results also showed that Berberis integerrima is the predominant species in Khorasan provinces. Therefore further molecular and morphological investigations aiming better understanding of the relationships between species and genera of Berberis family looks necessary.
Key words: Berberis, AFLP, Genetic diversity