Pomology
M. Fazeli Rostampour
Abstract
IntroductionYaghooti grape is the oldest grape variety in Iran and is the most important horticultural product in the Sistan region, which is cultivated in more than 90% of the vineyards of this region. The issue of water scarcity in Sistan has become a serious threat to grape production in recent years, ...
Read More
IntroductionYaghooti grape is the oldest grape variety in Iran and is the most important horticultural product in the Sistan region, which is cultivated in more than 90% of the vineyards of this region. The issue of water scarcity in Sistan has become a serious threat to grape production in recent years, forcing local grape growers to manage this problem by reducing the volume and frequency of irrigation. Proper irrigation management, which involves determining the optimal timing and the required amount of irrigation for grapevines, is of particular importance. Therefore, the purpose of this research is to investigate the physiological response of Yaghooti grapes to lack of water in different stages of growth in order to achieve the highest yield and also increase the production and income of gardeners in Sistan region. Materials and MethodsThis experiment was conducted as strip-split plot design based on randomized complete block design with three replications at the Zahak Research Station from 2019 to 2023. The experimental treatments included an irrigation regime of control (full irrigation), irrigation after 35% soil moisture deficiency, and irrigation after 70% soil moisture deficiency. These treatments were applied to horizontal plots and while the irrigation stages including from bud burst to flowering, from flowering to fruit color change, from berry color variation to harvest, and from harvest to leaf fall, were assigned to vertical plots. The traits including the relative leaf water content, leaf area, proline, soluble sugars, relative permeability of leaf cell membrane, canopy temperature and chlorophyll index were measured one week before flowering, cluster color change, fruit harvest and leaf color change. The row spacing was three meters, and the vine spacing within rows was two meters. Irrigation scheduling was determined based on the treatments using a TDR moisture meter. After full maturity (uniform ruby color of the cluster with a Brix above 17), the trait of cluster length was measured using a ruler and the cluster width and berry diameter were measured using a caliper. The traits of cluster number and number of berries per cluster were counted and cluster axis weight (average weight of three cluster axes per plant), fresh berry weight (average weight of 10 berries per cluster), cluster weight (average weight of four clusters per plant) and yield (average yield of three plants per plot) were measured using an OHAUS digital scale with an accuracy of 0.01 g (Gatti et al., 2012). For statistical analysis, after ensuring the normality of the data, analysis of variance was performed using SAS software version 9.4 and using the GLM procedure. Composite variance analysis related to the three years was performed when the Bartlett test confirmed the homogeneity of variances. Results and DiscussionDeficit irrigation resulted in a reduction in cluster rachis weight, cluster length, cluster width, number of berries per cluster, berry diameter, berry weight, cluster weight, number of clusters per vine, and fruit yield, along with an increased rate of yield reduction. Reducing the water availability for grapevines led to a decrease in the traits affecting fruit yield. This reduction varied for each trait depending on the specific stage of deficit irrigation. For all traits, deficit irrigation applied during the flowering to veraison stage was the most sensitive to irrigation reduction. The highest (6500 kg) and lowest (1111 kg) fruit yields were obtained under full irrigation and irrigation after 70% depletion of available water during the flowering to veraison stage, respectively. The highest fruit yield under deficit irrigation was observed during the fruit harvest to leaf fall stage. Across all deficit irrigation regimes, the lowest fruit yield was associated with the flowering to veraison stage. Irrigation after 35% depletion of available water during the stages of bud break to flowering, flowering to veraison, veraison to fruit harvest, and fruit harvest to leaf fall resulted in yield reductions of 32.8%, 43.2%, 8.8%, and 5.6%, respectively, compared to full irrigation at the corresponding stages. Irrigation after 70% depletion of available water during the same stages caused yield reductions of 73.7%, 82.8%, 36%, and 24.5%, respectively, compared to full irrigation (Table 3). Although the effect of year on fruit yield was not significant, there was a reduction of 7.3% and 12% in the second and third years compared to the first year, respectively (Table 4). A multiple linear regression analysis was performed for the fruit yield of Yaghooti grape. The traits influencing the predictive equation for yield (Yield) included cluster length (CL), cluster width (CWi), cluster weight (CWe), and the number of clusters per vine (C/V), as shown in Model 1.Model 1) Yield = 3481 + 126 CL – 68 CWi + 14 CWe + 185 C/VThe highest (82.7%) and lowest (4.8%) fruit yield reduction rates were observed under irrigation after 35% depletion of available water during the flowering to veraison stage and irrigation after 70% depletion of available water during the fruit harvest to leaf fall stage, respectively. The highest rate of fruit yield reduction occurred when deficit irrigation was applied during the flowering to veraison stage. Conversely, the lowest rate of fruit yield reduction was observed when deficit irrigation was applied during the fruit harvest to leaf fall stage. DiscussionThe results showed that fruit yield responded differently to deficit irrigation. Deficit irrigation during the bud break to flowering and flowering to veraison stages had the greatest impact on reducing fruit yield, with the effect being more pronounced during the flowering to veraison stage. However, the impact of deficit irrigation during the veraison to fruit harvest and fruit harvest to leaf fall stages on yield was less compared to the bud break to flowering and flowering to veraison stages. The lowest fruit yield and the highest rate of yield reduction were observed under irrigation after 70% depletion of available water during the flowering to veraison stage, amounting to 1111 kg.ha-1 and a yield reduction rate of 82.7%, respectively. The results showed that irrigation after 35% soil moisture deficiency during the stages of bud burst to flowering, from flowering to fruit color change, from berry color variation to harvest and from harvest to leaf fall reduced fruit yield by 27.9, 38, 7.1, and 4.1 percent compared to full irrigation in the corresponding stages, respectively. In general, by reducing the irrigation rate in the stages from berry color variation to harvest by 35% soil moisture deficiency, water consumption can be saved and yield is not significantly reduced.
Pomology
M. Fazeli Rostampour; H. Mahmoudzadeh
Abstract
Introduction Yaghooti grape is the earliest grape variety in Iran and is the most important horticultural product in the Sistan region, which is cultivated in more than 90% of the vineyards of this region. Considering the massive project of transferring water through pipes for 46 thousand farmer's ...
Read More
Introduction Yaghooti grape is the earliest grape variety in Iran and is the most important horticultural product in the Sistan region, which is cultivated in more than 90% of the vineyards of this region. Considering the massive project of transferring water through pipes for 46 thousand farmer's fields as a recent approach in agricultural programs of the sistan region and also the necessity of changing the cultivation pattern, the suitable contribution of the new cultivation pattern is allocated for grape. A grapevine canopy is defined as the shoots and leaves system. Bearing and green pruning are defined as factors allows the grape farmers to enhance and maximize their production and quality.Materials and Methods In order to evaluate the effects of balance pruning and green pruning on some traits and fruit yield of Yaghooti grape, the present research was conducted in the Zahak agricultural research station during 2017-2021.This research was conducted as a factorial experiment based on a randomized complete block design for three years. Four levels of bearing pruning intensity including: control or local custom (B1), 10 + 60 (B2), 10 + 40 (B3), and 10 + 20 (B4) considered as the first factor and four levels of intensity green pruning including; control or conventional local method (G1), pruning of cans from above eight leaves on the last cluster (G2), pruning of unproductive branches + pruning of cans from above eight leaves on the last cluster (G3), 4-pruning of branches without fruit from the bottom + pruning of unproductive branches + pruning the cans from the top of the eight leaves on the last cluster (G4) considered as the second factor in three replications. The study was conducted on 12-year-old vines of the Yaghooti cultivar, which were trained using the traditional system and spaced 3 meters apart in both directions. The data collected during cluster formation included morphological traits such as cluster length, cluster width, main and sub axes length of the cluster, berry diameter, cluster axes weight, berry weight, cluster weight, berry number in the cluster, and cluster/vine to fruit yield. The analysis of variance for each variable was performed using the PROC GLM procedure in SAS 9.4. Furthermore, the relationships between the evaluated morphological traits were determined using multiple linear regression.Results and Discussion The results showed that bearing pruning had a significant effect on all traits except berry diameter. Green pruning had a significant effect on cluster length, total length of main and sub axes, cluster axis weight, berry weight, cluster weight, number of berries per cluster and yield. The balance pruning (20+10) caused to increase the cluster length, cluster width, berry diameter, cluster axis weight, total length of main and sub axes and berry weight by 32.5, 30.6, 8.97, 32.8, 34.4 and 15.3% compared to the control, respectively while but led to 33.8% reduction in cluster/vine compared to the control. The results of the study showed that pruning of G4 had a significant positive effect on the length and width of clusters, weight of cluster axes, total length of main and sub-axes, and berry weight, increasing them by 11%, 19.5%, 15.8%, 14.6%, and 11.9% respectively, compared to the control. The interaction between balance and green pruning had a significant effect on cluster weight, berry number in cluster, and yield. The B4G4 treatment resulted in a 137.4%, 82.3%, and 14.2% increase in cluster weight, berry number in cluster, and yield compared to the B1G1 treatment. Multiple linear regression analysis indicated that cluster length, berry weight, cluster weight, and cluster/vine were the most important traits that influenced fruit yield in the Yaghooti grape. In general, the results showed that the interaction of balance and green pruning (B4G4) increases yield by 17.2% compared the control (B1G1).Conclusion The shape and structure of the grape vine is very effective on the growth and development of the product. This determines the amount of photosynthesis and carbohydrates production. If the structure of the grape vine is changed in such a way that a greater portion of carbohydrates production belongs to the fruit, the grape production will significantly affected in terms of quality and quantity. Due to the fact that grapes are grown by creeping method in the Sistan region, fruit and green pruning (local custom) led to a high density in the plant crown which reduces light penetration as well as the ratio of producer to the consumer leaves. This method may negatively impact the quality and marketability of grape clusters by reducing the number and weight of the clusters and berries, as well as the length and width of the clusters. However, in this study, we increased the intensity of fruiting and green pruning, which resulted in a reduced crown density and less shading. Our utilized method directed the major portion of photosynthesis to the fruit, which led to quantitative and qualitative fruit yield increment.
Mohammad Reza Naroui Rad; Behnam Bakhshi; Jahangir Kohpalekani Abbasi; Ahmad Ghasemi; Mansour Fazeli Rostampour
Abstract
Introduction: In Iran, there are various melon populations due to properties of cross pollination, which are mostly cultivated in the desert, so it is important to identify populations and study their response to low irrigation conditions and their selection. Sistan is one of the most important melon ...
Read More
Introduction: In Iran, there are various melon populations due to properties of cross pollination, which are mostly cultivated in the desert, so it is important to identify populations and study their response to low irrigation conditions and their selection. Sistan is one of the most important melon production areas in the country. Every year, in the optimal water conditions of the region, cultivation area reaches nearly to 6,000 hectares, but the area under cultivation is affected by fluctuations in the Hirmand River. Its famous melons in the region include Sefidak, Firoozi and Helmendi, which are very popular among farmers in terms of taste. The amount of rainfall in this region is very small and the agriculture of the region is affected by the fluctuations of Hirmand River and these fluctuations cause damage to agricultural producers, but recognizing the best and most suitable genotypes can help a lot to melon production. Variation and selection are the important elements of the breeding program and the selection by the breeder requires a good variation in the population. In Iran, the largest producer of melons is province of Khorasan Razavi, with 48.7 percent of the production in country, and province of Sistan and Baluchistan with the 5.62 percent is in the fifth rank. Therefore, in this regard, it is necessary to consider the desirable populations and cultivars in terms of production and yield. The quality of soil and the limitation of water resources, especially in recent decades, have intensified the world's agriculture. In the most parts of Iran, especially in Sistan, due to recent drought, identification of resources and cultivars with the potential of optimal production is important. Therefore, the present study was conducted to evaluate the populations of melons and their response to different irrigation regimes.Materials and Methods: In this study, the populations of the gene bank (34 population), mostly from the central and eastern regions of the Iran, along with two local sefidak and suski, which were relatively tolerant and sensitive, respectively to drought stress were cultivated in a simple square lattice design with 2 replications for comparison under normal and drought stress conditions. Under water deficit conditions, irrigation was carried out at water depletion of 75% and for normal irrigation with 50% water depletion from the field capacity. Soil moisture monitoring was carried out using a TDR device. Some morphological and physiological traits such as yield, number of fruits per plant, average fruit weight, fruit length and width, plant length, hole diameter, chlorophyll content, canopy temperature, relative water content were measuredResults and Discussion: Based on the results of combined analysis of variance, there was a significant difference between the populations for all traits except for the number of fruits per plant. The effect of the environment was significant only for the traits of soluble solids, single plant yield, canopy temperature and days to maturity also the interaction of the population with the environment was significant only for plant length, canopy temperature and root length, which indicated a different population reaction in relation to these traits under two conditions of normal and moisture stress. The results of the mean comparison of the traits showed that in normal conditions, the highest number of fruits belonged to numbers 1, 2, 6, 7 and 8, which had no significant difference with the check number 36. The results of analysis of factor in moisture stress condition showed that the first four factors justify nearly 70% of the variation among the traits. Therefore, the positive values of the first factor can be effective for selection of genotypes with a high yield and high fruit weight. However, the second factor with negative values of canopy temperature and positive values of leaf relative water content is effective in determining the high tolerance genotypes to moisture stress conditions.Conclusion: Under normal and stress conditions, population number 23 had acceptable yields. The traits of fruit weight and size, flesh diameter and fruit length and width are among the traits that should be considered by the breeders according to their relationship with the yield. Genotypes with high root length had high tolerance to water deficit condition. In general, under stress conditions, more soluble solids were observed in the populations.
Mansour Fazeli Rostampour
Abstract
Introduction: Yaghooti grape (Vitis vinifera L.) is an important variety in Iran and also it is the most important horticultural product of Sistan region. This variety is of interest for economical aspect. Because continuous drought in Sistan region has been a serious threat to the grape production, ...
Read More
Introduction: Yaghooti grape (Vitis vinifera L.) is an important variety in Iran and also it is the most important horticultural product of Sistan region. This variety is of interest for economical aspect. Because continuous drought in Sistan region has been a serious threat to the grape production, local farmers have to manage the problem by reducing the volume and irrigation intervals. The canopy plays a key role in radiation energy capture via photosynthesis apparatus, water use as regulated by transpiration, and microclimate of ripening grapes and also grape yield, quality, vigor, and the prevention of grape diseases. Since vines has high vegetative growth makes them compete with the reproductive growth, therefore vines be pruned every year.Materials and Methods: In order to evaluate the effects of irrigation regime and green pruning on some physiological traits and fruit yield of Yaghooti grape, the present research was conducted in the research and extensional garden of Zahak city during 2017-2018. An experiment was carried out in the form of a split plot based on randomized complete block design with three replications. Three irrigation regimes of 100, 75 and 50 percent of the grape water requirement based on the potential evapotranspiration of grape and green pruning with three levels including the control plot or the local practice of not green pruning (P1), pruning the green branches starting from the sixth leaf above the last grape bunch (P2) and pruning the green branches starting from the sixth leaf above the last grape bunch along with green pruning of the green branches without fruit and pruning the unproductive brunches (P3) were allocated to main and sub-plots, respectively. ‘Yaghooti vines were 8 years old and trained as a traditional system. The vines were spaced 3 × 3 m. Water requirement of grape was determined according to the FAO method using data from a Class A evaporation pan. The analysis of variance for each variable was performed with the PROC GLM procedure in SAS 9.4. Multiple linear regression was used to determine the relationships of leaf relative water content, proline, soluble sugars, relative membrane permeability, chlorophyll index, and leaf area to fruit yield.Results and Discussion: By reducing water consumption from 100 to 75% of grape water requirement, leaf relative water content, fruit juice acidity, chlorophyll index, leaf area and fruit yield decreased 10.1, 6.5, 8.6, 11 and 18.8%, respectively and also proline, soluble sugars and relative membrane permeability increased 67.3, 8.75 and 44.84%, respectively. The P3 treatment compared to control induced an increase in relative leaf water content, chlorophyll index, and fruit yield by 14.7, 12.2 and 25%, respectively as well as a reduction in proline, soluble sugars, relative membrane permeability, fruit juice acidity and leaf area index by 18.34%, 12.1%, 6.8%, 8.3% and 21.3%, respectively. Also the results indicated that providing the 100% of the water requirement combined with pruning the green branches starting from the sixth leaf above the last grape bunch in combination with green pruning of the green branches without fruit and pruning the unproductive brunches (P3) caused the highest grape fruit yield (7797 kg ha-1). Also the interaction effect of meeting 75% of the water requirement and the green pruning had the same result as that of meeting 100%of water requirement under no green pruning conditions. In other words, the green pruning could result in saving 25% of water used by the grape cv. Yaghooti without reducing fruit yield. The multiple linear regression analysis indicated that proline and leaf area were the most important traits impacting fruit yield in Yaghooti cultivar.Conclusion: Reducing the water potential of vine causes different responses. The most important are a decrease in number cells of fruit, vegetative growth, leaf area, relative leaf water content, chlorophyll content, fruit yield, and increase in the compatible osmolytes. The growing shoots are a strong sink for the consumption of photosynthetic materials. The above mentioned effect causes an increase in the branch overgrowth and its overshadowing. All this factors compete with vine fruit production. So, green pruning and removal of apical dominance eliminates a strong place of nutrient absorption. In other words, green pruning results in a greater accumulation being used by flowers and fruits, causing sufficient light penetration into the crown and reducing evapotranspiration, leading to an increased water consumption and fruit yield.