Medicinal Plants
Behrooz Rahimkhani; mahboobeh naseri; ahmad ahmadian; Masoud alipanah
Abstract
Introduction:From the past, medicinal plants have been used as one of the most important resources for medicinal purposes. Even now, the use of medicinal plants is expanding in many developed. Salinity stress is one of the most important influencing factors in reducing plant growth. Salinity stress limits ...
Read More
Introduction:From the past, medicinal plants have been used as one of the most important resources for medicinal purposes. Even now, the use of medicinal plants is expanding in many developed. Salinity stress is one of the most important influencing factors in reducing plant growth. Salinity stress limits plant growth by reducing metabolic and physiological activities in the plant. One of the consequences of salinity stress in the plant is the production of abscisic acid in the plant. One of the methods that have been tested in recent years to reduce the effects of salinity stress in plants is the use of seaweed and its extract. According to the studies conducted in some plants, seaweed extract can cause the growth and expansion of the roots and help to increase the absorption of water and minerals through the roots. Also, based on the research conducted on some plants, the use of seaweed increases the amount of chlorophyll in the plant and accelerates the time of flowering and fruit formation in the plant. Echium amoenum is a perennial plant belonging to the family Borage is a valuable plant in terms of its medicinal properties is considered. in general environmental factors have a significant effect on flower production in these plants. Therefore, for the successful cultivation of medicinal plants, including in general environmental factors have a significant effect on flower production in these plants. Therefore, for the successful cultivation of medicinal plants, including Echium amoenum, providing optimal environmental conditions is a priority, providing optimal environmental conditions is a priority.Ascophyllum nodosum seaweed extract contains significant amounts of high-use mineral elements such as nitrogen, potassium, calcium, magnesium, and low-use mineral elements such as iron, copper, and manganese. Therefore, according to the current results, in this study, the effect of foliar spraying of algae extract was investigated. The morphological characteristics of Echium amoenum seedling under salt stress were investigatedMaterials and MethodsIn order to investigate the effects of foliar spraying of seaweed extract on borage flower seedlings under salinity stress conditions, a factorial experiment was conducted with two factors of seaweed and salinity stress with sodium chloride salt, in the form of a completely randomized design in the greenhouse. The seeds were purchased from Pakan Seed Company of Isfahan and soaked in normal water for 24 hours, and then they were transferred into small pots containing three parts of peat moss and one part of perlite. One week after transferring the seedlings to the main pots, foliar spraying with seaweed extract was done. Foliar-spraying was repeated once every two weeks and in total the seedlings were sprayed three times with seaweed extract. In this experiment, a concentration of 1500 ppm of seaweed extract and three levels of salinity (EC=1.6, 4, 8) were used.The seaweed extract used in this experiment belonged to Akadin Company. The type of seaweed from which the extract was prepared was Ascophyllum nodosum and it is a type of brown algae. One week after the first foliar application of seaweed extracts, the application of salinity stress began. In order to prevent shock in plants, salinity treatment was done gradually and in three stages. In order to prevent salt accumulation, washing with ordinary water was done once every two weeks. Results and DiscussionThe results showed that the use of seaweed extract can significantly protect plant growth under salinity stress. Seaweed extract increased the amount of proline and potassium in the leaves of the plant and thereby reduced the harmful effects of salinity stress on the borage plant. In addition, foliar spraying of borage plant with the use of seaweed extract increased the amount of chlorophyll in the plant, and in this way, by increasing the amount of photosynthesis in the plant; it helped the plant to grow better under salt stress conditions. The results of this research showed that the use of seaweed extract helps the plant to maintain its conditions against salt stress by increasing the amount of proline and absorbing potassium in the tissue. In addition, foliar spraying with seaweed extract preserves the structure of chlorophyll in the plant under salinity stress, and in this way, by increasing the photosynthetic efficiency, it helps the plant grow better under salt stress. According to the obtained results, it can be concluded that the use of seaweed can reduce the negative effects of salinity stress in the seedlings of Iranian borage. In addition, due to its low price and availability, it can be used as a suitable bio-fertilizer to protect plant growth under salinity stress conditions.
Medicinal Plants
Mahboobeh Naseri
Abstract
Introduction
Saffron is a plant belonging to the lily family, which is one of the most valuable species of medicinal plants and is often cultivated in areas with dry climates. Saffron is the main source of income for many farmers in the rural areas of the east of the country and after pistachio; it ...
Read More
Introduction
Saffron is a plant belonging to the lily family, which is one of the most valuable species of medicinal plants and is often cultivated in areas with dry climates. Saffron is the main source of income for many farmers in the rural areas of the east of the country and after pistachio; it is the most valuable agricultural product in Iran. The yield and quality of saffron is influenced by various economic, social, educational and cultural characteristics of saffron growers. Considering the effect of various environmental factors on the growth and performance of saffron, the process of examining the suitability of land for its cultivation requires the use of comprehensive and diverse spatial information. Applying appropriate management methods to solve the existing limitations will lead to the actual performance approaching the potential performance. Considering that the level of planting saffron in many parts of the country is increasing, and on the other hand, based on the long-term average statistics, its yield has decreased significantly, the need for continuous monitoring of the level of planting and yield is one of the essential issues of managers. The purpose of this research was to investigate the relationship between climatic and management factors with saffron yield and to determine the most important parameters affecting yield using saffron information in the Kadkan section of Torbet Heydarieh. It was done to analyze and check the performance of saffron in 2021.
Materials and Methods
In order to investigate the cultivation of saffron and its yield in the Kadkan of Torbat-Hydaria, the data of the cultivation area and yield in 2021 were analyzed. A questionnaire was used to collect data. The questionnaire included information on cultivation area, production rate, and type of irrigation, age of the farm, education and age of the farmer. In this regard, the questionnaire was conducted from 447 people (at the level of 302 hectares) of saffron farmers. The information of these questionnaires was used to analyze the cultivation of saffron in Kadkan of Torbat Heydarieh in 2021.
Results and Discussion
The saffron yield recorded was 3.8 kg of dry stigmas per hectare, signifying a decrease when compared to previous years, with a decline of 26% and 56% compared to 2019 and 2018, respectively. Analysis of the results revealed that the highest saffron yield was observed in four-year-old farms, amounting to 4.17 kg per hectare. Conversely, fields irrigated from the river exhibited the lowest yield at 2.76 kg per hectare, as per the findings of the current study. Based on this study, there was no significant difference between the yield of saffron stigma in pressure irrigation (4.07 kg/ha) and flood irrigation (4.03 kg/ha) of the researched fields. The yield in saffron farms had an inverse relationship with the age of the farmer, so that with the increase in the age of the farms that were covered by the age of the farmers, the yield decreased and the farms that were under the management of younger people, the yield was higher. According to the results, the saffron farms that were cultivated under the management of uneducated farmers had the lowest yield (2.8 kg/ha) and those with university education had the highest yield of saffron stigma (1.5 kg/ha). The results of the cultivated area data showed that with the increase in the cultivated area of saffron, its yield decreased (the regression coefficient with the first-order model was 26% and the second-order model was 38%).
Temperature and rainfall are two influencing factors on saffron performance. In 2016 and 2017, the yield of saffron decreased significantly due to the following reasons: Decrease in rainfall compared to previous years, Improper distribution of rainfall during the vegetative growth period of saffron, The lower and more negative temperatures in 2019 (November, December, December, February and March) compared to the mentioned years caused a decrease in dry stigma harvest in 2014 compared to 2016 and 2018. Given that the majority of saffron farms in the Kadkan district are approximately 4.16 years old (as indicated in Table 2), it is anticipated that the yield of farms in this district may decline in the upcoming year. However, it's important to note that this prediction is solely based on the age of the farms, and actual outcomes may vary depending on climatic conditions. Due to the prevalence of small-scale ownership of saffron farms in Kadkan, managed within a family exploitation system, the management of these smaller farms is typically more manageable. Consequently, it is foreseeable that smaller farms may experience an increase in yield. Therefore, based on these considerations, saffron cultivation is recommended particularly for small-scale owners rather than larger landholders.
Medicinal Plants
Tayebeh Baeradeh; Hossein Arouiee; Mahboobeh Naseri; Mojtaba Mamarabadi
Abstract
Introduction
Fruits and vegetables are perishable due to high humidity and biological activity after harvesting (breathing, transpiration and biochemical activities). Covering fruits with antimicrobial compounds, while being edible and safe for consumers, is an effective solution to prevent the spoilage ...
Read More
Introduction
Fruits and vegetables are perishable due to high humidity and biological activity after harvesting (breathing, transpiration and biochemical activities). Covering fruits with antimicrobial compounds, while being edible and safe for consumers, is an effective solution to prevent the spoilage of fruits and increase their shelf life. In developing countries, packaging, storage and transportation technologies for these products have not been developed yet. One of the cheap and high-performance methods to increase the shelf life of fruit and maintain its quality during the storage period is to use a coating on the fruit. The purpose of coating application is to reduce water loss, slow aging, polish and better marketing. In addition to improving quality, coating can protect the fruit from pathogens and contamination. Edible coatings create a thin layer on the surface of the food that are effective and eco-friendly alternatives and maintain the firmness of fresh fruits and vegetables. The main components of edible coatings are natural polysaccharides, including starch, cellulose, pectin, alginates and chitosan. These coatings apply by spraying, immersion or rubbing. The use of essential oils and other extracts of medicinal plants has been evaluated in the development of edible coatings.
Adding Ziziphora tenuior L. essential oil to food has been considered as an antioxidant and antimicrobial compound. Directly use of essential oils for fruits and vegetable shelf life has some limitations due to low solubility in water, high vapor pressure and physical and chemical instability. One of the ways to reduce these limitations is the nanoencapsulation of essential oil as. Applications of nano technology to the development of edible coatings (included various nanosystems, including polymeric nanoparticles, nanoemulsions), efforts to control the release of essential oils. Aloe vera gel, which is extracted from the inner parts of the leaves, is clear, odorless, completely healthy and environmentally friendly and can replace the coverings used after harvesting fruits. This is a polysaccharide gel, it dissolves easily in water and has advantages such as preserving the aromatic substances inside the fruit, covering the wound and cuts and it is possible to add substances such as vitamins and essential oils to this gel. Due to the antibacterial properties of aloe vera, adding aloe vera gel to edible coatings can increase the antibacterial properties of this biodegradable coating. On the other hand, using nano technology can increase the efficiency, consistency and better quality of food coatings.
Materials and Methods
The aim of the present study was to prepare and produce an oral coating of nanoecapsule containing Ziziphora tenuior L. essential oil. The components of the nanocapsule of Aloe vera gel was water, toewin and Ziziphora tenuior L. essential oil. Fresh Aloe vera leaves were used to prepare gel. Zeta-average diameter, particle size distribution, scattering index (PDI) and zeta potential (particle surface charge) were measured. Transmission electron microscopy (TEM) imaging was used to evaluate the morphology of the nanocapsule. The stability of produced nanocapsule was evaluated by measuring the particle size changes for 3 months.
Results and Discussion
21 compounds were identified in the essential oil of Ziziphora tenuior. The main and important constituents of Ziziphora tenuior L. essential oil were Pulegone, Menthofuran and 1,8-Cineole. The results showed that the particle size of nanocapsule containing essential oil was 84.46 nm and zeta potential was -16.02 mV. The results of transmission electron microscope (TEM) photos showed that the size of the particles is less than 200 nanometers and the shape of the particles is almost spherical. The outer surface of the capsules is completely smooth and uniform. Stability studies of particle size and zeta potential for 3 months showed that nanocapsule containing essential oils had good stability. In this formulation, the zeta potential was about -16 mV, which is due to the non-ionic parts of the surfactant on the surface of the nanocapsule, which contributes to the repulsion force and caused the stability of the size of the nanocapsules. In order to determine the amount of essential oil in the nanocapsule, spectrophotometric method was used. The percentage of essential oil in nanocapsule was 83.25%.
Conclusion
Nanoencapsulation of essential is one of the ways to reduce the limitations of essential oil aplication. In the present study, a nancapsule with natural and biodegradable materials (Aloe vera gel) containing Ziziphora tenuior L. essential oil was prepared and the results showed that Ziziphora tenuior L. essential oil was successfully encapsulated in Aloe vera gel. In general, the results of the present study showed that the nanocapsule of Aloe vera gel is a suitable carrier for Ziziphora tenuior L. essential oil and can be used as an oral coating to preserve fruits and vegetables.
Medicinal Plants
Mahboobeh Naseri; Abbas Abbasian
Abstract
Introduction: Saffron is an annual plant that grows based on underground organs of the plant as corms and can be used for several years under farming conditions. This plant is the main source of income for many farmers in rural areas of eastern Iran. Khorasan Razavi province with 76% of cultivation area ...
Read More
Introduction: Saffron is an annual plant that grows based on underground organs of the plant as corms and can be used for several years under farming conditions. This plant is the main source of income for many farmers in rural areas of eastern Iran. Khorasan Razavi province with 76% of cultivation area and 74% of production has the first place in saffron production. Among the different cities of Khorasan Razavi province, Torbat Heydariyeh city with a cultivation area of about 8 thousand hectares out of 87 thousand hectares of the whole province has an area equivalent to about 10%. Contrary to the level of cultivation, the average yield in Khorasan Razavi province is 3.4 kg / ha, which is 0.22 kg / ha lower than the national average. Considering that the level of saffron that is increasing in many parts of the country and on the other hand, according to the long-term average statistics, its yield has decreased significantly. The need for continuous monitoring of planting level and yield is one of the most issues for managers and programs. This research was conducted using the information of referral letters issued for guaranteed purchase of saffron in the Torbat-e Heydariyeh Kadkan town to analyze and evaluate the performance of saffron in 2017 and 2019.Materials and Methods: In order to study saffron cultivation and its yield in the Kadkan town, cultivation data and yield data in the years 2017 and 2019 were analyzed. Guaranteed purchase information of saffron was used to collect data. In 2017, 95 people (at the level of 132 hectares) and in 2019, 173 people (at the level of 257 hectares) of saffron farmers in the Kadkan town to deliver saffron to guaranteed shopping centers (Rural Cooperative Office of Torbat Heydariyeh) to Jihad Agricultural Center. They came to Torbat-e Heydarieh Kadkan and received a letter of introduction. The information of these referrals (area under cultivation, dry stigma yield, production rate, village name and amount of saffron delivered) was used to analyze saffron cultivation in Torbat-e Heydariyeh, Kadkan town in 2017 to 2019.Results and Discussion: Based on the results of saffron yield in the Kadkan town in 2017 and 2019, 5.17 and 8.64 kg of dry stigma obtained, respectively. The amount of saffron delivered to shopping centers in 2017 and 2019 was 532 and 1270 kg, respectively. According to the results of saffron yield in 2017 compared to 2019 due to climatic and managerial conditions, has increased by 67%. Fitting of cultivation and yield data of 95 saffron farms in 2017 using a linear model showed that with increasing the area under saffron cultivation, yield decreases R = 0.26 **. Also in the polynomial model. Second degree, with increasing the area under cultivation to the level of five hectares, the yield decreased and since then showed a slight increasing trend (R = 0.26 **). Fitting of cultivation data and yield of 173 saffron farms in 2019 based on the second degree polynomial model R = 0.24 24 ** showed that with increasing the area under cultivation up to seven hectares, the yield has decreased and since then it has an increasing trend. In the third degree polynomial model R = 0.28**, like the second degree of yield, decreased to seven hectares and then increased and then was fixed. Considering that the cultivation area of the most farms in Kadkan town was between 0.1 and 2 hectares and farms up to two hectares in the villages of Kadkan townt, it is non-mechanized, therefore, in these farms, the management of smaller farms could be done more easily and the increase in yield for these farms was predictable.Conclusion: According to the results of the present study, the yield of saffron in 2017 and 2016 was 5.16 and 8.64 kg / ha, respectively. Considering that the average yield of saffron in the country is 3.62 kg per hectare (Statistics of the Ministry of Jihad Agriculture, 2018), the yield of saffron in the Torbat-e-Heydariyeh Kadkan town can be considered as high yield in the country, which is probably due to climatic conditions and is managerial. 67% increase in yield in 2019 compared to 2017due to climatic reasons (increased rainfall) and management (nutrition, agriculture, training, irrigation, proper planting date, use of corms with appropriate weight, disinfection of corms at planting, Summer irrigation, weed control).
Mahboobeh Naseri; Hossein Arouiee; Maryam Mohammadi
Abstract
Introduction: Spinacia olerace is the most important leaf vegetable of the Chenopodiacea family, which has a special place in human nutrition because of its variety of minerals and vitamins. Cultivation of this plant in Iran is several thousand years old and accordingly Iran is considered as the main ...
Read More
Introduction: Spinacia olerace is the most important leaf vegetable of the Chenopodiacea family, which has a special place in human nutrition because of its variety of minerals and vitamins. Cultivation of this plant in Iran is several thousand years old and accordingly Iran is considered as the main place and a source of spinach in the world. Growth of plants is affected by genetics, environmental conditions, growing season, nutrients, and soil, harvesting method, temperature, intensity and quality of light. Among these factors, soil nutrients have a significant influence on plant growth and yield. Nowadays, the consumption of organic matter as fertilizer due to its high cost and limited availability is not sufficient and the major nutritional needs of plants are met by chemical fertilizers, which can lead to environmental problems and, over time, reduced yields. In this connection humic acid is a naturally occurring organic compound and contains 2% to 5% organic matter. Humic acid can be used to seedling nutrition and improve its quality and quantity. Given the recent use of organic acids such as humic acid to improve crops and horticulture, but little research has been done on transplant birth, this experiment was conducted to investigate the application of different levels of humic acid in irrigation water at the time of irrigation. Different effects and their effects on growth indices and spinach production were investigated.
Material and Methods: The present experiment was conducted to investigate the application of different concentrations of humic acid at different times and its effects on quantitative and qualitative indices of spinach in a factorial completely randomized design with three replications in research greenhouse at Torbat Heydariyeh University. Treatments consisted of three concentrations of humic acid (0, 3 and 6 ml/L) at two application times (one-week and two-week). The mean daily greenhouse temperature at the time of plant growth was 25°C and the mean nighttime temperature was 18°C, the average relative humidity was 60%. After seedlings were planted in the main pots at four-leaf stage, they were irrigated with humic acid (0, 3 and 6 ml/L) at different intervals once a week, twice weekly. The humic fertilizer used belonged to Green Seed Company, containing 24% humic acid and 3% folic acid and 2% potassium. Five weeks after treatment, the traits were measured. Transplant growth indices including number of leaves (by counting the number of shoots per plant), leaf length and width, leaf area, canopy, height, chlorophyll index, chlorophyll a, b, carotenoid and dry weight of each plant were determined.
Results and Discussion: Based on the results of this experiment, the effect of humic acid concentration on morphological and physiological traits of spinach transplant was significant. The highest leaf number (4.6) at 3 ml concentration and the lowest number (3.5) were at zero concentration. These traits were subjected to humic acid titer, but the increase in concentration had no significant effect on these traits. The increased number of leaves and traits mentioned in the early stages of transplant growth is probably due to the rapid expansion of the root system of the plant at high concentrations of humic acid, which in turn leads to increased nutrient uptake, better plant growth and subsequent growth. Leaf number and other traits become leaf dependent. The results showed that the highest chlorophyll a (1.8 ml/g fresh leaf), chlorophyll b (2.5 ml/ml fresh leaf), carotenoids (7.1 ml/ml). Fresh leaf g) and biomass (150 mg) at 3 ml concentration and the lowest at zero concentration. The highest chlorophyll index (74.1 ml/ml fresh leaf g) was also found in the concentration of 6 ml and the lowest was obtained from zero concentration. Humic acid increased spinach transplant biomass by increasing the amount of photosynthetic pigments and leaf area or the same photosynthetic capacity. In most of the traits, the two-week application time was higher than the one-week, so that spinach transplant biomass increased by 110% over the two-week application period. So that spinach transplant biomass was 156 at the two-week application and 74 mg at the one-week application. Based on the results of this experiment, humic acid application can improve the quantitative and qualitative traits of spinach transplant and its production.
Conclusion: Production of vegetable seedlings have an important role in the production and olericulture economy. Specializing in different activities in the vegetable production process will simplify the production process and increase efficiency. This means that the best conditions for seedling growth should be provided during transplanting. Application of humic acid organic fertilizer instead of chemical fertilizer can reduce environmental pollution in line with sustainable agriculture and healthy eating with vegetables to prevent the accumulation of chemicals in the human body to be effective. In this regard, the results of this study showed that using low humic acid as organic fertilizer can improve morphophysiological traits of spinach transplant.