Growing vegetables
L. Cheheltanan; S. Khosravi; S.H. Nemati
Abstract
IntroductionGrasses are narrow-leaved plants that are used as cover plants in landscape. These plants are one of the basic and necessary components of the green cover of most gardens, parks and as the background color of landscape. In Iran, due to the high costs of planting and management of grass, high ...
Read More
IntroductionGrasses are narrow-leaved plants that are used as cover plants in landscape. These plants are one of the basic and necessary components of the green cover of most gardens, parks and as the background color of landscape. In Iran, due to the high costs of planting and management of grass, high water requirements, climatic incompatibility and damage to water and soil salinity, it is recommended to remove from the green space in some cities, especially in areas with low water and water and soil saline. If it is possible to benefit from the role and influence of these plants by observing the technical points and choosing the best species for each area. Salinity stress is the second limiting factor for the growth of plants in the world after drought, which affects the efficiency and performance of plants. Increase in salinity causes a decrease in the water potential in the soil. In this condition, the plant spends most of its energy to maintain the water potential, cell mass, and water absorption to have minimal growth. The aim of this research is the effect of external application of glycine betaine on the accumulation of osmolality compounds and the antioxidant system of sports grass under salt stress. Materials and MethodsThis research was done in factorial form in completely randomized design with 3 replications on Rashid variety cucumber. The factors included 4 levels of temperature (25, 30, 35 and 40 degrees Celsius) and 3 levels of salicylic acid (0, 0.5 and 1 mM). When the seedlings reached the two-leaf stage, they were sprayed with different concentrations of salicylic acid two times with an interval of five days. One week after the application of salicylic acid, temperature treatment was gradually applied. After applying each heat treatment, the corresponding pots were transferred to the greenhouse with a temperature of 25 degrees Celsius. Then, fresh and dry weight of root and shoot, leaf surface, chlorophyll index, electrolyte leakage, proline, polyphenol oxidase enzyme activity and superoxide dismutase enzyme activity were measured. Results and Discussion The results showed that salinity stress decreased all the study morphological, physiological and biochemical parameters including plant height, shoot fresh and dry weight, number of tiller, leaf area, chlorophyll content, protein and total antioxidant capacity in the studied plants. It also increased peroxidase enzyme, H2O2 and proline in plants, but glycine betaine application significantly improved the morpho-physiological characteristics of plants compared to the control under salt stress conditions. Thus, the highest height, shoot fresh and dry weight, leaf area, number of tiller, chlorophyll content, and protein and antioxidant capacity were observed in plants sprayed with glycine betaine. Also, the highest content of glycine betaine and activity of catalase and peroxidase enzymes and the lowest content of glycine betaine and H2O2 were observed in in plants sprayed with glycine betaine and 10 mM glycine betaine was more effective than 5 mM. The occurrence of salinity in plants disrupts the absorption of ions and causes the reduction of nutrients and increases sodium ions. One of the effects of salinity in plants is the reduction of photosynthetic activity, which results in the reduction of chlorophyll, carbon dioxide absorption, photosynthetic capacity, plant height, shoot fresh and dry weight, number of tiller and leaf area. One of the most strategies to deal with stress is accumulation of osmolyte and increasing the antioxidant activity, which makes plants resistant to environmental stresses. Salinity, through the toxic effect of Na+ and Cl- ions, affects the growth and performance of the plant by reducing the soil water potential, disrupting water absorption and imbalance of nutrients in the plant. The results obtained from comparing the average results of glycine betaine show that glycine betaine increased plant height, shoot fresh and dry weight, number of tiller, leaf area, chlorophyll content, total protein and antioxidant capacity, but on the other hand, it increased proline and H2O2 decreased, which is due to the accumulation of glycine betaine as a protector in plants under salt stress conditions. In stress conditions, glycine betaine can protect photosynthetic activities including photosynthetic enzymes, proteins and lipids in thylakoid membranes in the combination of photosystem II, and also the task of protecting cell membranes against osmotic stresses in the plant. ConclusionThe results obtained from this research showed that salinity stress reduced all the morphological, physiological and biochemical characteristics in the sport grass plants, but glycine betaine application played a positive role in reducing salinity damage and maintaining plant quality. Glycine betaine is known as one of the effective molecules in stress signaling, so it can protect the plant cells against stress by reducing the destruction of the membrane and by increasing the salt tolerance mechanisms. Also, glycine betaine 10 mM is introduced as the best treatment to reduce salinity damage in sport grass during present study.
Growing vegetables
S. Khosravi; M. Haghighi; M. Menatkhesh
Abstract
Introduction
Agaricus bisporus is the important mushroom that is cultivated industrially and due to its medicinal properties, it has special nutritional importance in the food basket of the people of the world. It is predicted that with increasing population and changing consumption patterns, ...
Read More
Introduction
Agaricus bisporus is the important mushroom that is cultivated industrially and due to its medicinal properties, it has special nutritional importance in the food basket of the people of the world. It is predicted that with increasing population and changing consumption patterns, food will be one of the most critical issues in the country soon and protein poverty will be one of the most critical leading crises. Mushroom can be the best choice for the supply of essential human protein because they produce protein-rich foods using agricultural waste. Mushrooms are also rich sources of essential amino acids, vitamins (B2, niacin and folate), and minerals. White button mushroom production accounts for about 35% of the total world production of edible mushroom. The production of edible mushroom (Agaricus bisporus) depends on planting, amount of spawn consumed, growing conditions, species and media of cultivated edible mushroom.
Material and methods
The present study aims to investigate the effect of vitamins B and C on growth, yield of button mushroom and its postharvest life. The study was performed in two separate experiments in the mushroom factory and storage. The experiment was performed in the mushroom factory located in Khomeini Shahr city of Isfahan province and experiments related to the laboratory section and the research laboratories of the Faculty of Agriculture, Isfahan University of Technology. In this study, a box culture system was used to grow mushrooms. For this purpose, in order to prepare the culture media and prevent the mixing of culture media containing different treatments, cardboard plastic was used to make the boxes. First, in order to eliminate the pathogens, tiram fungicide is used for 24 hours. Cartonoplasts were then placed at specific distances of 30 cm by 30 cm. To eliminate pathogens, the composts were steamed in an autoclave at 121 ° C at a pressure of 1.34 atmospheres for 15 minutes and boarded and treatments were applied. Treatments include 3 levels of vitamin C (0, 3 and 6 mg / kg) (C0, C1 and 2C), 3 levels of vitamin B (0, 0.5 and 1 mg / kg) (B0, B1 and B2) was performed by factorial experiment in a randomized complete block design with 4 replications (40). Vitamin B complex, including vitamins B1, B2, B6, B12 and B9 were prepared in a ratio of 1: 2: 2: 5: 4. The treatments were applied to the composts used in the bed after boarding and before applying topsoil. When the mushrooms reached the commercial harvest level, i.e., the cap was 2.5 to 8 cm, but the cap was not opened, the factors related to vegetative growth were measured as follows. The number of mushrooms during the harvest period was counted for all treatments and at the end of the period, the average number of mushrooms per unit area was calculated. Cap diameter and base of each fungus were measured with a caliper during the harvest period for all mushrooms. In order to estimate yield, the mushroom harvested daily were weighed from all replications of each treatment.
Result
The results showed that the nutritional supplements used in this study were effective in increasing vegetative growth and yield and the highest number of mushrooms and dry weight were related to vitamin treatment. The interaction effect of vitamin C and vitamin B on the quantitative and qualitative characteristics of edible mushrooms at harvest time showed that dry weight increased at C1 and C2 with increasing concentration of B2 and decreased at C0. Cap diameter increased at all concentrations of vitamin C with increasing concentration of B2 and C2 had the highest amount. Base diameter was highest in C1 with increasing all concentrations of B vitamins compared to other treatments and lowest in C2 with concentration of B0. Ion leakage in C2 increased with increasing concentration of B2 and decreased in C0 and C1. The number of mushroom in C1 and C2 decreased with the addition of vitamin B and the highest number in C2 increased with the concentration of B0. The weight of grade 2 at C0 and C1 decreased with increasing concentrations of B2 and B1, respectively. Total yield was increased at all concentrations of vitamin C using B1. The highest total yield was observed in C1 treatment with B2 application. Total performance in control and C2 treatment decreased with increasing B2. Harvest time hardness increased in all three vitamin C treatments by increasing the concentration of B1, but increasing the concentration of B2 compared to B1 decreased. The highest increase was observed in the control treatment of vitamin C and the highest decrease was observed in the treatment of C2. Harvest time whiteness increased in C0 and C2 with the addition of vitamin B and decreased in C1. In general, in the control treatment of vitamin C in the two concentrations of B1 and B2, the highest amount of whitening time was observed. The highest amount of ash was observed in C2 with B2 application. In the postharvest experiment, the highest hardness after 32 days of storage was related to vitamin B treatment and the highest postharvest hardness, postharvest whiteness, and whiteness after 32 days of storage were related to vitamin C treatment. Also, the results of comparing the mean of interactions showed that the total yield in all three vitamin B treatments increased with the application of 3 mg/kg. The results of the second experiment showed that the rate of water loss in C1 with the addition of B2 concentration was the highest and in the control treatment was the lowest. The hardness increased after 32 days of storage in the control treatment and C2 with the application of B1, but decreased in C1 and C2 with the use of B2. The highest amount of whiteness was observed in C1 after 32 days of storage by increasing the concentration of C1, which was not statistically significant with the control treatment. It seems that there is not much difference between different concentrations of vitamin C in vegetative and postharvest fungal traits, but better results have been obtained by increasing the concentration of vitamin B. The results indicate that the effect of supplements on the yield of edible mushrooms is different so that adding appropriate amounts of supplements to the culture medium significantly increases crop yield. The results of this study showed that vitamin C1 treatment resulted in the highest dry and total weight, cap diameter, base diameter, and number of mushrooms. Wetter and drier cap and base diameters, ion leakage and water loss, were the highest in vitamin B2 treatment.
Growing vegetables
Saeid Khosravi; Maryam Haghighi
Abstract
Introduction: Brassinosteroids promote plant growth by enhancing some metabolic activities such as photosynthesis, nucleic acid biosynthesis, proteins and carbohydrates. Mechanisms of resistance and tolerance in plants have been developed to tolerate water deficit stress. One way to deal with drought ...
Read More
Introduction: Brassinosteroids promote plant growth by enhancing some metabolic activities such as photosynthesis, nucleic acid biosynthesis, proteins and carbohydrates. Mechanisms of resistance and tolerance in plants have been developed to tolerate water deficit stress. One way to deal with drought is to use plant growth regulators. Brassinosteroids were first extracted from the pollen of turnip (Brassica napus) and were considered as the sixth group of plant growth regulators. These compounds stimulate growth and cell division and affect electrical properties, membrane permeability, stability and activity of membrane enzymes. Nowadays, brassinosteroids have been extracted from various plants and their structure and function have been identified.Materials and Methods: This experiment was conducted in a factorial experiment based on a completely randomized design on Capsicum annuum L. Castello cultivar under the average daily temperature of 25 °C and 18 °C at 75% relative humidity in greenhouses. Research conducted by the College of Agriculture, Isfahan University of Technology, with four drought treatments using polyethylene glycol 6000 solutions at four levels of 0, -6, -7, and -8 bar. Brassinosteroids were sprayed in two 1 μM control levels. Pepper seeds planted in transplanting trays containing 1 to 2 volumes perlite and vermiculite substrate. When the actual leaf of seedlings appeared, the root thoroughly rinsed with distilled water and then were transferred to black plastic containers with a diameter of 16 and height 13cm and 1L volume containing Johnson's nutrient solution including four dry treatments using 6000 polyethylene glycol solution and aerated in control for 15 minutes every 5 minutes. At the end of the experiment, vegetative factors such as fresh and dry weight of different parts of the plant, plant length, and volume, and physiological factors such as proline and abscisic acid content and chlorophyll fluorescence changes were measured.Results: The results of the analysis of variance table showed that brassinosteroid had no significant effect on most vegetative traits except root volume and weight and all physiological traits except chlorophyll fluorescence and the mentioned traits increased with the application of 1 mM brassinosteroid. However, the main effects of drought except for amino acid and the interaction of drought and brassinosteroids were significant on all traits. The results of the main drought effects showed that the root fresh weight at -8 bar and dry weight at -7 bar significantly decreased, whereas fresh and dry weight of the shoots at lower than -6 bar. The onset of decline showed that the root length and volume appeared to decrease with the onset of stress by -6 bar and the plant length also reduced with the first stress level. Drought stress at -6 bar level decreased chlorophyll fluorescence, chlorophyll index and Abscisic acid while at -7 bar decreased protein and increased proline. The results also showed that the amount of sulfuric, essential and unnecessary amino acids were significantly reduced by drought stress and brassinosteroid had no effect. Total amino acid content decreased with drought stress but there was no significant difference with control. With increasing drought stress, the fresh and dry weights of shoots decreased and the intensity of shoots decreased. The intensity of shoot growth decreased with the use of brassinosteroids at moderate stress but the mentioned trait showed the same adverse effects at all levels of stress. Brasinosteroid application decreased stress indices such as proline (7%) and abscisic acid (50%) and this decrease was more pronounced in proline, especially in more severe treatments. Amino acid and protein levels decreased with drought stress, and the use of brassinosteroids could not be effectively affected by this reduction, especially for the compounds and the amount of amino acids.The results of biplot analysis showed that the vegetative and protein traits had better mean in stress condition in the presence and absence of stress and in higher stress severity and application of brassinosteroid affected root fresh weight and abscisic acid content more than the other traits. While in mild stress it seemed to be more effectively on the steroid and most of the vegetative and physiological traits than the control.Conclusion: It seems that the application of brassinosteroids on pepper seedling in drought stress at a concentration of 1 μM is effective in maintaining vegetative properties and reducing negative effects of stress and reducing stress indices.