Growing vegetables
S. Mahmodi Soreh; A. Motallebi Azar; J. Panahandeh; Gh. Gohari; A. Jahanian
Abstract
Introduction
Potato (Solanum tuberosum L.) is an important food and cash crop having the first rank in the world from non grain crops to ensure food security. The tubers produced through the conventional propagation are characterized by low multiplication rate and susceptibility to pathogens. Microtubers ...
Read More
Introduction
Potato (Solanum tuberosum L.) is an important food and cash crop having the first rank in the world from non grain crops to ensure food security. The tubers produced through the conventional propagation are characterized by low multiplication rate and susceptibility to pathogens. Microtubers are an ideal propagating material for producing high quality seed potatoes. Nowadays, the production, application, and biological risk assessment of nano-scaled products have attracted global concerns in various fields such as agricultural, biotechnological, medicinal, and plant sciences. Chitosan, a biocompatible polymer, has been widely utilized to improve the production of nano-chemicals, thereby improving crop growth, productivity, and immunity. Nanotechnology plays an important role in modern agriculture to address global challenges such as climate change, severity of plant diseases and the limited availability of important plant nutrients. Polymer-based nano-formulations have recently received the greatest attention with the key objectives of developing less harmful, plant growth promoting and protective agents of biodegradable and natural origin. Use of chitosan-based nanoparticles in agriculture field is still in a budding phase. Significant outcomes have been reported in in vitro and a few in vivo studies in plant growth and protection by chitosan-based nanomaterials.
Materials and Methods
MS medium containing 80 g of sucrose, containing glycine betaine at concentrations of 20 and 40 mg/l, chitosan at a concentration of 240 mg/l, glycine betaine 20 and chitosan 240 mg/l, glycine betaine 40 and chitosan 240 mg/l, 120 mg/l, glycine betaine nanocomposite coated with chitosan 120 and 240 mg/l and control treatment, as well as nonsalinity treatments with the same compounds and concentrations mentioned for salinity were cultured. The study was performed in randomized complete block design with three replications and sixteen treatment. Glycine betaine nanocomposite coated with chitosan were prepared at Maragheh University as follows. Chitosan, glycine betaine, and triphosphate are major consumables. First, chitosan was dissolved well with acetic acid under the influence of temperature. Then, a certain amount of glycine betaine was dissolved in distilled water and added to the chitosan. Tri-polyphosphate (TPP) was dissolved in distilled water at a certain volume ratio and added dropwise to the mixture of chitosan and glycine betaine. The precipitate obtained under the freeze-drying process lead to the preparation of its powder.
Results and Discussion
According to the comparison of the means, treatment of glycine betaine coated with chitosan nanocomposite at a concentration of 120 mg/l produced the highest number of microtuber during the experiment from the first month to the final month. The nanocomposite was more capable of improving growth and biomass than the bare ZnONPs in pepper. The application of the nanocomposite increased the concentration of chlorophylls (51%), carotenoids (70%), proline (2-fold), and proteins (about 2- fold). The supplementation of culture medium with the nanomaterials upregulated enzymatic antioxidant biomarkers (catalase and peroxidase) (Asgari-targhi et al., 2021). The highest mean microtuber weight was related to the nanocomposite treatment of 120 mg/l with a weight of 29 mg. In the microtuber diameter, this treatment had the highest value. The results of analysis of variance in Table 1 indicate that the effect of moderate salinity and the interaction of moderate salinity and nanocomposite treatments are not significant and the effect of experimental treatments is significant at the level of 5% probability. Due to the fact that the most important trait in the potato microtuberization is microtuber yield, so in the experiment, the highest microtuber yield was earned nanocomposite treatment with 131 mg and the lowest in control treatment with 87 mg. It seems that by using stress-reducing compounds such as glycine betaine and chitosan and nanocomposites, these compounds increase the amount of genes responsible for the formation of microtuber, and as a result, increasing the proteins involved in stresses induce more microtuberization. Also, nanocomposite materials, more assimilated materials may be transferred from the roots to microtuberization processes.
Conclusion
The microtuber produced in the glycine betaine coated with chitosan nanocomposite treatment produced the highest number of microtubers in the first, second, third, and final months. In treatments with moderate salinity in the first, second, third and final months, the number of microtuber and eyes and sprouted microtubers had the highest amount compared to the treatment without moderate salinity. Also, plants treated with glycine betaine voated with chitosan nanocomposite in the microtuber trate showed a greater effect than chitosan and glycine betaine with chitosan. According to the findings of this study, it seems that the use of nanocomposite materials in increasing the microtuber and reducing the vegetative growth of potato shoots has been made in Agria cultivar.
Mohammad Reza Asghari; Mohammad Tohidian
Abstract
Introduction: Asaclimactericfruit, peach has a highrespiration rateandvery lowshelf life. Nowadays theuse ofappropriatepostharvesttechnologiesto increase fruit postharvest lifeis necessary.Use of nanotechnologyis considered asan effective method to increase fruit postharvest life. Nanotechnology isused ...
Read More
Introduction: Asaclimactericfruit, peach has a highrespiration rateandvery lowshelf life. Nowadays theuse ofappropriatepostharvesttechnologiesto increase fruit postharvest lifeis necessary.Use of nanotechnologyis considered asan effective method to increase fruit postharvest life. Nanotechnology isused extensivelyinallstages of production, processing, storage, packagingand transport ofagriculturalproducts.The objective of this study was to investigate the effect of silver and silica nanocomposites, nanosilver and polypropylene containers on shelf-life and preservation of peach qualitative characteristics (Prunuspersicacv. Elberta) such as titrable acidity, soluble solids, ascorbic acid, total antioxidant and total phenolics content in cold storage after the harvest.
Materials and Methods: To determine the effect of nanopackaging onshelf life andqualitativecharacteristics ofElberta peaches,the experiment was conducted in a factorial based on a completely randomized design with two treatmentsand four replications.The first factor consisted of nanopackagingnanosilver, silver and silica nanocompositesandpolypropylenepackaging, and the second factor was coldstorage periods of15, 30 and 45 daysattemperaturesfrom 0 to0/5 °C and a relative humidityof 85to 95%.In general, the experiment consisted of 36 experimental units, and each includinga container with four Elberta peach fruits.Data were analyzed by using SAS software, and Microsoft Office Excel 2010 software was used to plot the graphs.Duncan's multiple range test was used to compare the means of treatments.
Results and Discussion: At the end of the maintenance period, the highest firmness of peach texture was related to nanosilver containers. The main cause of fruit softening is the destruction of cell wall components, especially pectin, which is caused by certain enzymes such as polygalactronase. Whenstorage timeincreased, polypropylene containers showed a higher weight loss compared to nanocomposite containers, thus the results indicated that nanopackaging had a greater effect on preventing weight loss, which could be attributed to the formation of better barrier against water molecules. Nanoparticles and polypropylene containers up to 30-daystorage period preserved the pH of the product to some extent and prevented it from increasing too much. However, with an increase in storage time from 30 to 45 days, the pH of all dishes showed sharpincrease. In most treatments, fruits grew during the maintenance period, which is due to the reduction of organic acids. The lowest levels of organic acids reduction were recorded in polypropylene and nanosilver treatments. Generally, organic acids decreased as a result of respiration or becoming sugars, whichcan bedirectly related to metabolic activity. Maintaining organic acids in fruits is the result of a slowdown in the processes of ripeningand aging and reduction inrespiration and other metabolic activities. The results showed that in all the three treatments, the amount of soluble solids up to 15-day periodshowed an increasing trend, and after the end of day 30, it stopped in nanosilver and polypropylene treatments, and soluble solids were retained but reduced in nanocomposite treatment showed that this decrease. Nanocomposite containers exhibited the best performance in maintaining ascorbic acid content and preventing its changes, while ascorbic acid content in nanosilver and polypropylene containers varied greatly, thoughthere were no significant differences among thetreatments. Low oxygen environments, such as packaging containers, can inhibit ascorbic acid changes during maintenance by inhibiting oxidation. The results showed that total antioxidant level was almost identical in all treatments at the end of maintenance. Antioxidant activity has a close relationship with phenolic compounds, flavonoids and vitamins. The antioxidant capacity of fruits and vegetables is related to enzymatic and non-enzymatic compounds such as vitamin C, phenolic compounds, and carotenoids. Treatments reducingrespiration and producingethylene can reduce the rate of aging,the rate of free radical production and the consumption of antioxidants. Based on the results, on the day 30 in all treatments, the amount of phenolic compounds initiallyincreased, which is normal in red fruits, but afterwards decreased in all treatments mainly due to the increased activity of the polyphenol oxidase enzyme and the progression of aging. Increasing the amount of phenol on the day 30 can be attributed to decreased activity of the polyphenol oxidase enzyme and the oxidative stress associated with high concentrations of oxygen.
Conclusion: Nanopackaging increased the shelf life and qualitative properties of peach fruit. Nanotechnology has a simple and fast process for industrialization compared to other methods of keeping food products. As a result, the use of modern technologies such as nanopackaging can improve the taste, favor, quality of food and the storage of crops, especially fruits and vegetables.