Growing vegetables
Mohsen Mohammad Rezaei; Moazzam Hassanpour Asil; Jamal-Ali Olfati; Mohammad Mehdi Gheisari
Abstract
IntroductionThe Persian Shallot (Allium hirtifolium Boiss) is a valuable medicinal plant native to Iran, known for its significant economic value and medicinal properties. Its rich phytochemical composition makes it useful in treating various conditions such as rheumatism, stomach ulcers, and microbial ...
Read More
IntroductionThe Persian Shallot (Allium hirtifolium Boiss) is a valuable medicinal plant native to Iran, known for its significant economic value and medicinal properties. Its rich phytochemical composition makes it useful in treating various conditions such as rheumatism, stomach ulcers, and microbial infections, while also showing potential as an aquaculture regulator. However, the overexploitation of natural habitats poses a threat to its biodiversity and survival. Sustainable practices in collection and cultivation are essential to address the increasing global demand while preserving genetic and chemical diversity. Iran's favorable climate and plant diversity position it well for the production and export of high-quality medicinal plants, including the Persian Shallot. Research on the nutritional value of native plants can further contribute to their recognition and utilization.Material and MethodsThis study was carried out in six habitats of Allium hirtifolium Boiss in Isfahan province in 2022. The research aimed to assess the morphophysiological and phytochemical characteristics of Persian shallot plants by collecting samples from six natural habitats at different altitudes. Each habitat yielded 50 samples during the growing season, which were then evaluated for traits such as number of leaf, leaf area surface, fresh and dry weight of onion of Persian shallot. Phytochemical analysis involved grinding fresh plant leaves with acetone, followed by spectrophotometric readings to determine chlorophyll, carotenoid concentration, and antioxidant activity. Data analysis was carried out using variance analysis to compare means and cluster analysis to group habitats based on their traits. The study employed SAS, SPSS and Excel software for statistical analysis and visualization. Phytochemical analysis involved grinding fresh plant leaves with acetone, followed by spectrophotometric readings to determine chlorophyll, carotenoid concentration, and antioxidant activity. Data analysis was carried out using variance analysis to compare means and cluster analysis to group habitats based on their traits. The study employed SAS, SPSS and Excel software for statistical analysis and visualization. The study employed SAS, SPSS and Excel software for statistical analysis and visualization. The study employed SAS, SPSS and Excel software for statistical analysis and visualization.Results and DiscussionThe research revealed significant diversity among Iranian shallot plants collected from different habitats, indicating the presence of substantial biodiversity due to environmental factors and genetics. The study found variations in morphological and phytochemical traits, such as fresh and dry weight, leaf area, chlorophyll and carotenoid content, and antioxidant activity among different plant stands. These differences were linked to factors like altitude, temperature, and soil conditions. Altitude was particularly influential, with higher altitudes leading to increased leaf surface and chlorophyll content. Furthermore, cluster analysis showed distinct groupings among the populations based on their traits, highlighting the impact of genetic factors and climatic conditions on the plants. The findings underscore the importance of understanding plant responses to natural growth conditions and environmental factors for breeding programs. Altitude gradients were identified as crucial in influencing plant characteristics and species distribution.Altitude was particularly influential, with higher altitudes leading to increased leaf surface and chlorophyll content. Furthermore, cluster analysis showed distinct groupings among the populations based on their traits, highlighting the impact of genetic factors and climatic conditions on the plants. The findings underscore the importance of understanding plant responses to natural growth conditions and environmental factors for breeding programs. Altitude gradients were identified as crucial in influencing plant characteristics and species distribution.Altitude was particularly influential, with higher altitudes leading to increased leaf surface and chlorophyll content. Furthermore, cluster analysis showed distinct groupings among the populations based on their traits, highlighting the impact of genetic factors and climatic conditions on the plants. The findings underscore the importance of understanding plant responses to natural growth conditions and environmental factors for breeding programs. Altitude gradients were identified as crucial in influencing plant characteristics and species distribution.ConclusionThe study confirms the presence of biodiversity among shallot populations in six habitats, indicating the potential for selecting suitable populations and genotypes. Results suggest that altitude variation has influenced genetic diversity and phytochemical composition, highlighting the impact of climatic and geographical factors on population diversity. climatic and geographical factors on population diversity. climatic and geographical factors on population diversity. climatic and geographical factors on population diversity. Further research is needed to identify specific factors contributing to diversity in Isfahan province and molecular markers can enhance understanding of population diversity.
Growing vegetables
Sasan Golcheshmeh; Ghaffar Kiani; Seyyed Kamal Kazemitabar; Saeid Navabpour
Abstract
Introduction
Tomato is a product with a wide range of genotypes with different yields and selection based on this trait and its components can accelerate the breeding programs of this plant. The most important goals of tomato breeders have been to increase yield, disease resistance, early maturity, ...
Read More
Introduction
Tomato is a product with a wide range of genotypes with different yields and selection based on this trait and its components can accelerate the breeding programs of this plant. The most important goals of tomato breeders have been to increase yield, disease resistance, early maturity, and improve the quality characteristics of the fruit. Therefore, awareness of genetic diversity in the population is an important step in plant breeding, and to achieve this goal, the studied genotypes must first be identified in terms of genetic potential and favorable agronomic traits. The usual approach for describing and evaluating populations requires cultivating sample populations and evaluating their morphological and agronomic characteristics. In this regard, multivariate statistical methods play an important role in studying genetic diversity and selecting appropriate parents. Unfortunately, the tomato cultivars used in Iran are often not at the favorable level in terms of important traits such as the number of days to fruit ripening, fruit weight, fruit yield, fruit length, and width, and few studies have been done on these traits. Therefore, this study was conducted to investigate the morphological diversity, evaluate the yield and its components among some imported tomato lines using analysis of variance, cluster analysis, and principal component analysis.
Materials and Methods
This study was performed in Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Iran in 2020. The plant material included 24 tomato lines imported from the Canadian Plant Gene Bank and one check variety. The experimental design used for morphological analysis was a randomized complete block design with three replications. Evaluated characteristics were included of the number of days to first flowering, number of days from germination to first fruit coloring (early ripening), plant height (cm), number of fruits per plant, average fruit weight per plant (g), plant yield (g), length and width of the fruit (cm). After measuring the characteristics at the farm and recording the data, analysis of variance was performed to examine the diversity between lines in terms of the studied variables, and Duncan test was used to compare the means and SAS software was used to test the correlation coefficients of the variables. Cluster analysis for grouping of tomato lines was performed based on the mean of the main data of standardized traits, which was determined by Euclidean distance to determine the distance between the lines, and the UPGMA method was used to merge the clusters. Principal component analysis was performed based on the mean of the main data of morphological traits.
Results and Discussion
The results of the analysis of variance showed that there was a significant difference between all lines in terms of the studied characters. Also, principal component analysis based on morphological traits showed that the first two main components accounted for 75% of the total phenotypic variation in the data and the number of days from germination to first fruit coloring (-0.606), the number of days to first flowering (-0.516), fruit weight per plant (0.492), fruit width (0.480), fruit length (0.472), plant height (-0.445), fruit yield per plant (0.395) and the number of fruits per plant (-0.367) had the highest contribution in yield changes. Therefore, these variables might be taken into consideration for effective selection of parents for hybridization programs for broadening the genetic base in the population as well as to develop elite lines or F1 hybrids. UPGMA cluster analysis also divided the studied lines into nine groups. Group IX lines were in good condition in terms of yield traits and components, group VIII lines in terms of maturity and flowering, and group IV lines in terms of fruit number per plant. And the lines in groups I and V were in moderate condition for all traits. According to these results, the cross of the lines in the more distant groups can produce hybrids with high diversity and maximum heterosis.
Conclusion
According to the main purpose of this study, which was to evaluate the yield and its components and according to the analysis performed, lines 8, 11, and 17 due to showing the least number of days to flowering and early, lines 10 and 14 due to having the highest yield, the highest fruit weight, and highest fruit length and width and lines 2, 9, 15, 21, and 24 due to having the highest number of fruits per plant and the favorable height are also recommended for use in tomato breeding programs.
Pomology
Mohyedin Pirkhezri
Abstract
Introduction Barberry is one of the native plants of Iran and tolerates environmental stresses, especially drought. This species can play a special role in the future development of horticulture in Iran. This species is drought tolerant and can be used in the development of rain-fed gardens. The ...
Read More
Introduction Barberry is one of the native plants of Iran and tolerates environmental stresses, especially drought. This species can play a special role in the future development of horticulture in Iran. This species is drought tolerant and can be used in the development of rain-fed gardens. The Barberry family contains 15 genera and 650 species, most of which are distributed in the temperate regions of the Northern Hemisphere. The most important genus in the barberry family is Berberis. This genus has 500 species, some of which, including Zalzalaki, Zarafshani, Khorasani, Rastkhoshe, common and Japanese barberry, exist in Iran (i.e., Berberis vulgaris, B. orthobotrys, B. crataegina, B. integerrima, and B. khorasanica, respectively). This plant is widely distributed in Iran. Various wild species of barberry are distributed in the southern and northern slopes of Alborz from Firoozkooh, Taleghaneh, Miyaneh to Amarlu of Gilan. This genus grows on large areas of the Zagros at an altitude of 1000 to 2500 meters above sea level. Iran is the largest producer of seedless barberry in the world with a cultivated area of 18341 hectares and production of 21181 tons of dried barberry. This species can play a special role in the future development of horticulture in the country and reduce the pressure on water resources, especially in rain-fed horticulture.Materials and Methods In this study, 25 genotypes were evaluated from three regions: west of Alborz province (Taleghan region), north of Alborz province (Chalus road and Khuzenkola, Arangeh, Asara to Dizin heights) and northeast of Tehran (Lavasanat). Morphological evaluation was performed according to UPOV instruction (TG 68/3). 32 quantitative and qualitative morphological and horticultural traits were evaluated according to UPOV (TG 3.68). Of which, 11 quantifiable traits including leaf length and width, fruit length and width, pedicel length, Berries per raceme, cluster length, spines length, vitamin C, TA (Titratable Acidity) and TSS (Total Soluble Solid) were analyzed.Results and Discussion The results of analysis of variance showed significant differences between genotypes for all quantative traits evaluated at the level of 1% and for the number of berries per cluster at the level of 5%. The high coefficient of variation indicates high variability for the desired trait, which allows the breeder to have more choices for selecting desired genotypes. The number of fruits per cluster with 45.55, spines length with 28.67 and titratable acid with 26.58 percent malic acid, had the highest range of changes. Qualitative traits included Foliage secondary color, Leaf curvature and Leaf margin, Leaf glossiness, Color of lower side, Fruit tip, Fruit waxiness, Foliage persistence, and Shoot color in spring among the genotypes were uniform and without variance. The lowest coefficient of variation among quantitative traits was related to Brix (7. a16 percent) and fruit length (13.14 percent). The highest number of fruits was belonged to Lavasan genotype (AD8) giving an average of 25 fruits per cluster, which was substantially different from other genotypes. The highest and lowest fruit length and width are related to Taleghan 5 (11.59 mm) and Chalus 7 (3.26 mm) genotypes, respectively. In a study, the average length and width of barberry fruit were 7.69 and 3.32 mm, respectively. Vitamin C is one of the nutritional values of fruits and has direct effects on human health. Wild barberry genotypes possessing the least vitamin C content (4.7 mg/per 100 gram) of fresh fruit (Asara I genotype) and also the fruits containing the highest values (i.e., 10.57 (Taleghan 4), 9.63 (Chalous 8) and 9.4 (Taleghan 8)) yielded more than even temperate fruits such as stone and pome fruits (The mean amount of vitamin C in apples, grapes and black cherries is 4.6, 4, 10 mg/100 g FW, respectively). This value in strawberries as an indicator plant is reported between 10 and 100 and an average of 58.8 and the value for lemons is 53 mg/100 g FW. Khayat and Mahmoud Abadi (2010) reported the amount of vitamin C in seedless barberry treated by fertilizers varied from 4 to 9 mg per 100 g of fresh fruit.The highest values of total soluble solids or Brix˚ were related to Chalus 8 genotypes with value of 24.83% and Chalus 1 with value of 23.23% and the lowest amount was related to Asara 2 genotype with 18.1%. Khayat and Mahmoud Abadi (2010) reported the total soluble solids ranged between 18.3 to 33.06 percent in seedless barberry, which is much higher than our experiment. The highest titratable acidity were observed in Taleghan 4, Taleghan 8 and Taleghan 2 genotypes, with 2.66, 2.65 and 2.41 mg/ml malic acid respectively, and the lowest titratable acid was observed in Chalus 9 genotype with 1.12 mg/ml malic acid. This value has been reported in domestic barberry is between 1.07 and 2.95. The highest mean leaf lengths were observed in Chalus cultivars 3 and 5. Among the genotypes, Taleghan 7 has the longest Pedicel length.ConclusionThe selected genotypes for breeding programs were the Oshan (AD8) genotypes with an average of 25 fruits per cluster. Regarding vitamin C content the prominent genotypes were the Taleghan 4 (10.57), Chalus 8 (9.63) and Taleghan 8 (9.4) mg/100 g F.W. The highest genotypes for total soluble solids were Chalus 8 genotypes with 24.83 and Chalus 1 with 23.23 percent.
Breeding and Biotechnology of Plant and Flower
Mehdi Rezaei; Mitra Rahmati; Abdolreza Kavand; Morteza Hemati; Seyyed Reza Kazemi
Abstract
Introduction: Apricot (Prunus armeniaca L.) as an important fruit crop belongs to the Amygdaloideae in the Rosacea family and is grown in regions with Mediterranean climates in the world. Apricot species were classified into six eco-geographical groups including: Central Asian, East Chinese, North Chinese, ...
Read More
Introduction: Apricot (Prunus armeniaca L.) as an important fruit crop belongs to the Amygdaloideae in the Rosacea family and is grown in regions with Mediterranean climates in the world. Apricot species were classified into six eco-geographical groups including: Central Asian, East Chinese, North Chinese, Dzhungar-Zailij, Irano-Caucasian and European. Iranian genotypes which belong to the Irano-Caucasian group are mostly self-incompatible with low chill requirement. The high level of genetic diversity in Iranian apricots is due to sexual reproduction by seeds during the years. In Iran, many of apricot local varieties have been relocated between provinces and subsequently, in some cases their names, have been changed over the years. Hence, to determine the genetically different cultivars and detection of synonyms, screening of apricot germplasm seems necessary in Iran.Materials and Methods: Thirty eight commercial genotypes of apricot with five biological replications were collected from 14 nurseries in West Azarbaijan, East Azarbaijan, Esfahan, Semnan, Alborz, and Tehran Provinces in Iran. Additionally Orang Red apricot (Porteghali) included in the study as an outgroup sample. Also DNA sample of previously registered apricots in national list were used in this study. Young and healthy leaves of each cultivar were sampled and stored at -70 °C. Samples were powdered using mortar and pestle in presence of liquid nitrogen. CTAB extraction buffer was used for nucleic acid extraction. Quantity and quality of extracted DNA were measured by spectrophotometry and agarose gel electrophoresis.Thermal cycles were done in Eppendorf thermocycler and the cycling program were set on one cycle of 94°C for 4 minute, 30 cycles of 94°C for 30 seconds, annealing temperature of each primer for 30 seconds and 72°C for 30 seconds followed by one cycle of 72°C for 5 minutes. PCR products were resolved on 10% polyacrylamide gels in 1x TBE buffer. GelRed (Biotium) was applied for gel staining and amplified bands were revealed by UV (300 nm). Eight SSR markers which showed more diversity were selected and scored. Polymorphic alleles were scored as one for presence and zero for absence. For detection of off types, samples were classified by Paired Group method and Euclidean algorithm in PAST software. Then the data of off-types were removed from the dataset and samples were reclassified by the method. Principal Coordinate Analysis (PCoA) was carried out using PAST software. Genetic diversity indices were evaluated in Popgene 32 software. Results and Discussion: Eight SSR loci produced 124 alleles with the average 15.5 allele per locus. Nei’s gene diversity and Shannon’s information index were 0.32 and 0.48, respectively which showed high level of diversity in this collection. Distance matrix based on Nei’s gene diversity showed that the most genetic distance (0.74) was between Askar Abadi and Zodras, Mahali Goushti Zodras and Nasiri cultivars. Clustering of samples indicated that some samples including 19 (Shahroudi), 59 (Nakhjavan), 107 (Shahroudi), 127 (Soltani), 137 (Ghavami), 144 (Tabraze) and 156 (Daneshkade) were off-types.For identification of synonyms the off-type samples were disregarded. Cluster analysis illustrated that some local cultivars with different names had same genetic backgrounds. Thus, the names of these samples should be unified in the germplasm. Depicted graph based on first and second coordinates in PCoA demonstrated that the 38 collected groups of apricots are genetically 26 distinct cultivars and there are some duplicates in the germplasm. Results showed that three loci including UDP98-021, UDP98-409 and UDP98-411 were able to distinguish all 26 genotypes. To check the genetic identity of saplings with the same name, some cultivars including Jahangiri, Askar Abadi, Shamlou, Saltanati, Shahroudi, Shams, Tabarze and Rajab Ali were collected from two different nurseries. Surprisingly, the results showed that Nasiri, Tabraze and Shahroudi which were sampled twice from distinct nurseries and provinces, despite of identical names, had different genetic backgrounds.Conclusion: Detected off-types among five biological replications of local varieties propagated asexually by nurseries showed that there was not sufficient attention in the selection of propagating material in the nurseries. In this context, establishment of foundation blocks by public sector and mother orchards by private sector of economy from Iranian apricot local varieties can be an effective solution so that nursery operators can provide certified propagating material for production of certified nursery stocks. Moreover, seed and plant certification and registration institute should made inspection and testing procedures in mother orchards and nurseries to ensure that propagated trees are healthy, genetically uniform and original.
Mohammad Hossein Alemkhoumaram; Amir Hossein Keshtkar; Asghar Mirzaie Asl
Abstract
Introduction: Garlic is native to central Asia, with a three thousand years history of human consumption and use. Global consumption has increased fourfold during the 24-years period from 1989 to 2013. Area under garlic cultivation, average yield/ha and total production of the world were 1,468,811 ha, ...
Read More
Introduction: Garlic is native to central Asia, with a three thousand years history of human consumption and use. Global consumption has increased fourfold during the 24-years period from 1989 to 2013. Area under garlic cultivation, average yield/ha and total production of the world were 1,468,811 ha, 18,092 kg/ha and 26,573,001 tons, respectively in 2016; and China produces about 80% of world garlic production. The maximum global record has been registered at 2012 with an average bulb yield of 45,270 tons per hectare belongs to Uzbekistan. The area under cultivation of this plant in Iran is about 9000 hectares with an average yield of 10 tons per hectare. Garlic has been used both as a food flavoring and as a traditional medicine, and these characteristics are affected by sulfur compounds. Alliin (C6H11NO3S) with 177.22 molecule weight is a sulfoxide that is a natural constituent of fresh garlic. It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the alliinase enzyme, which contains pyridoxal phosphate (PLP), cleaves alliin, generating allysulfenic acid, pyruvate (C3H4O3), and ammonium (NH3). At room temperature two moles of allysulfenic acid as an unstable and highly reactive compound that through a dehydration reaction form one mole of allicin (C6H10OS2) with 162.26 molecule weight, which is responsible for the aroma of fresh garlic. In general, alliinase needs few minutes time to effect on every two molecules of alliin to form one molecule of allicin, two molecules of pyruvate and two molecules of ammonium. The generated allicin is unstable and quickly breaks down, for example during sixteen hours at 23°C it converts to a series of other sulfur-containing compounds such as diallyl disulfide. Allicin is part of a common defense mechanism in garlic plants against pest attacks. It is produced and activated after causing physical injuries. Iranian garlic has a good flavor, while with the exception of Mazand cultivar so far there is no other introduced bred cultivar. In this effort, diversity of agromorphological traits, bulb yield and allicin content of some Iranian landraces were studied to breed promising cultivar/s by single-bulb selection method for Hamedan climatic condition.
Materials and Methods: The experiment was carried out on the basis of a randomized complete block design (RCBD) with four replications in 2015-16 agronomy season at the Agricultural Research, Education and Natural Resources Center of Hamedan Province Located about 6 km north of Hamedan at the altitude of 1740 meters above sea level, longitude 48°, 52̍ E, latitude 34°, 52̍ N. The soil texture of the test site was loam with 24.4, 40.6 and 35 percent of clay, silt and sand, respectively. The soil tillage operation included plowing with the moldboard plow, disc and leveler. The furrow and stack were created with a width of 50 cm. Nine landraces from Hamedan province (Maryanaj, Bahar, Sheverin, Soolan, Toyserkan, Heidareh, Toeen, Hossein Abad and Ali Abad, and other nine ones from Gorgan (Golestan), Oromyeh (West Azarbaijan), Arak (Markazi), Bardsir (Kerman), Amol (Mazandaran), Ramhormoz (Khuzestan), Isfahan (Isfahan), Tarom (Zanjan) and Zabol (Sistan) cultivated on plots having 2 ridges with 4 meters long. Two rows were planted on the ridge with 25 and 10 cm spacing between rows and plants on the row, respectively (40 plant m-2). Bulb planting was carried out on November 17th, and first irrigation was rain-fed on 18th and 19th of November, with 19 and 9.9 mm rain, respectively, and during the fall and winter seasons, all water requirements were met through precipitation. Different landraces germinated from March 12th to March 16th. Pressure irrigation system was installed by re-growing in spring and plants were irrigated every seven to 10 days, depend on air temperature severity, until June 5th. Harvesting of different landraces was carried out by hands from June 26th to July 6th. Evaluated traits for each plot included weight of 30 seed clove, date of germination and maturity, number of plant per plot, chlorophyll a and b and carotenoids content of leaf, chlorophyll index by SPAD, relative water content of leaf, bulb yield, and weight of 30 produced clove, total pyruvic acid, and non-enzymatic pyruvic acid. The evaluated traits for five normal random plants (healthy plants on both sides, and on the opposite side of cultivation lines adjacent to the healthy plant) of each plot were including height, crown diameter, number of leaf, number of fallen leaf, length and width and leaf area, dry weight of plant leaf, dry weight of plant root (to a radius of five centimeters around the bulb) height and width and length of bulb, dry matter of bulb, number of skin layers, number and weight of clove, dry matter percentage. Assessment were also considered based on traits such as, moisture percentage of bulb, leaf area index, sum of chlorophyll a and b, loss weight of cuddle, harvest index, sphericity coefficient of bulb, total number of plant leaf, days number of germination to maturity, enzymatic pyruvic acid and allicin. Traits measurements were done based on "Descriptors for Allium". To measure pyruvic acid, 25 g of cloves with 25 ml of water were completely homogeneous in a mixer and passed through a filter paper after ten minutes. Ten ml of filtrated extract was increased into 100 ml volume with water and a half-milliliter of it was taken and added to 1.5 ml of 5% trichloroacetic acid solution, and after one hour, 18 ml of water was added to sample. Then one ml of resulting solution and each standard solution were transferred to separate test tubes. One ml of water and dinitrophenyl hydrazine 0.0125%, were added to each sample, and were heated in bain-marie bath at 37°C for ten minutes. At the end, by adding five ml of 0.6% normal caustic soda to the test tubes, the concentration of samples were determined in the presence of standard solutions (0.01, 0.225, 0.05, 0.1 and 0.2 μmol / ml sodium pyruvate) at 420 nm wavelength using spectrophotometer Pharmacia-Biotech model Novaspec II. To assess non-enzymatic pyruvate activity, alinase enzyme must become inactivated, so 40 to 60 grams of garlic clove is initially heated in microwave at 900 watts for three seconds for every gram of sample (120 to 180 seconds).
To find relationship between variables, the correlation coefficients between them were calculated. The study of the relationship between traits with bulb yield and alicin yield was done by stepwise regression method. Causal relationships and direct and indirect effects of traits on bulb and allicin were determined by path analysis method. Analysis of variance, mean comparison of traits by LSD method at 1% probability level, correlation determination, stepwise regression analysis and cluster analysis were done by Minitab software version 17.3.1, while Microsoft Word and Excel 2003 softwares were used to draw the graphs and path analysis, respectively.
Results and Discussion: The results shown that Iranian garlic landraces have noticeable diversity of agro-morphological traits, such as weight of 30 seed clove from 21 (Ramhormoz landrace) to 177 g (Hossein Abad landrace), bulb yield from 2059 (Ramhormaoz landrace) to 12090 kg ha-1 (Soolan landrace), Allicin yield from 4.9 (Ramhormoz landrace) to 53 kg ha-1 (Ali Abad landrace), bulb weight from 12.8 (Ramhormoz landrace) to 48 g (Bardsir landrace) and bulb diameter from 28 (Isfahan landrace) to 35 mm (Hossein Abad landrace), which are necessary for breeding programs. It is also confirmed that the adapted landraces from one region may have acceptable production in other regions. According to the present results, landraces from Oromyeh (10866 kg/ha), Arak (9941 kg/ha) and Bardsir (11444kg/ha) produced high yield in Hamedan climatic condition, so that the maximum allicin content were produced by landraces from Ali Abad (53 kg/ha), Maryanaj (51 kg/ha) and Oromyeh (51 kg/ha). Allicin content is calculated based on the bulb yield, and enzymatic pyruvic acid content and its molar relationship with allicin. In the recommended equilibrium of chemical reaction, the alliin coefficient on the one side is two and the coefficients of allicin and pyruvic acid on the other side are two and one, respectively. Bulb weight directly and crown diameter indirectly had highly correlation with bulb yield; and leaf area index, harvest index, bulb diameter and dry weight of plant leaf showed a high correlation with allicin content. The cluster analysis used standardized traits to divide landraces into two main groups as suitable and unsuitable sets to plant under Hamadan climatic conditions.
Conclusion: According to the results of the present study, it is recommended that Oromyeh, Soolan and Heidareh landraces can be used as valuable populations for breeding and introducing the suitable cultivars for Hamedan climatic condition through single-bulb selection method. Characteristics with easy and low cost assessment, such as crown diameter, leaf area index, bulb diameter under field condition; and after harvest measurements, such as bulb weight, harvest index, dry weight of plant leaf traits can also be considered as suitable selection indicators in breeding programs. Thirdly, the current study indicated that the cost of preserving garlic germplasm resources can be decreased by reducing the amount of stored materials, without the significant decline in genetic diversity.
Zahra Hassanzadeh; Hamid Hassanpour
Abstract
Introduction: Oleaster (Elaeagnus angustifolia L.), belonging to the Elaeagnaceae family, is usually a shrub or small spiny tree with a height of 2– 5 m. Branches of oleaster are silvery green and the leaves are egg-shaped or bayonet and the flowers are bell -shaped, very fragrant, cream color, and ...
Read More
Introduction: Oleaster (Elaeagnus angustifolia L.), belonging to the Elaeagnaceae family, is usually a shrub or small spiny tree with a height of 2– 5 m. Branches of oleaster are silvery green and the leaves are egg-shaped or bayonet and the flowers are bell -shaped, very fragrant, cream color, and single or clustered. The fruits are oval-shaped with a length of 1.5 –2 cm and their colors are reddish-brown. Oleaster (Elaeagnus angustifolia L.) is one of the most valuable fruit tree is grown wildly in northwestern of Iran. The oleaster was distributed in East Asia, Southeast Asia, and Queensland in northeastern Australia. This tree was extended along the rivers in many arid and semi-arid regions. It also plays a very important role in maintaining the ecosystem of dry areas, due to high drought tolerance and high salinity and alkalinity tolerance in soil. The evaluation of fruit and seed properties can be useful in selection of superior genotypes for commercially culture. Therefore, the aim of this study was to investigate the physical properties of seed and fruit of some Elaeagnus angustifolia genotypes in east and west Azerbaijan provinces.
Materials and Methods: In this study, thirty-eight genotypes of Elaeagnus angustifolia L., according to free of pest and disease characteristics were selected and labeled from east and west Azerbaijan provinces, Iran. The fully matured fruits were collected from studied genotypes and then transferred to the lab and different parameters such as physicochemical characterizations of fruit and seed such as weight, length and width of fruit and seed and fruit color parameter were measured. Fruit color was determined by Chroma meter CR-400 (Konica Minolta, Japan). After collected data, to calculate descriptive statistics, correlation and cluster analysis based on Ward’s method was used SPSS Software (Version 22). The factor analysis was also performed using varimax rotation method.
Results and Discussion: The results showed that there was high diversity in some of the attributes such as leaf width, leaf length/leaf width ratio and flesh weight. The highest diversity was observed in leaf width (37.56 %) and the fruit surface area had lowest diversity (2.09 %). The mean of fruit length, fruit width and fruit width, fruit geometric mean diameter and sphericity were 22.99, 16.09 cm, 1.69 g, 18.09 mm and 79.22 %, respectively. Ersoy et al. (2013) revealed that length, width, thickness and weight of fruit were 2.86 cm, 1.88 cm, 1.87 cm and 2.90 g respectively. The mean of seed length, width, thickness and weight were 2.42 cm, 0.508 cm, 0.503 cm and 0.38 g, respectively. Leaf length was positively correlated with leaf width, fruit length/fruit width ratio, and seed length and seed length/seed width ratio and negatively with fruit sphericity. In the present study, the mean of traits related to fruit color including L*, a*, b*, hue and chroma were 48.09, 13.99, 18.51, 52.18, and 28.23, respectively. In the study of Zare et al. (2012), the mean of L*, a*, b* were 12.42, 2.73 and 2.39, respectively. In the present study, the mean of traits related to fruit color was higher than the mean mentioned in Zare et al. (2012) study, and this discrepancy can be due to different environmental conditions and studied genotypes. In this study, based on factor analysis, the eight main factors were explained a total of 85.92 % of the variance, which 20.59% were related to the first factor and 18.69% to the second factor. The two-dimensional scatter plot was constructed for graphical overview of the relationships among genotypes. According to scatter plot created by two first factors, all studied genotypes were located in two groups. The scatter plot revealed geometrical distances among genotypes reflecting phenotypic and in this regard presumably genetic dissimilarity among them. According to the cluster analysis, genotypes were divided into two main groups. Genotypes in group first had the highest average fruit and seed length, width and weight. The traits related to color such as L*, a*, b*, hue, chroma had a significant role in separation of second group. Therefore, the presence of genotypes in different clusters represented high diversity in terms of evaluated traits among the all genotypes.
Conclusions This research is a preliminary study that can be based to select the desired genotypes. The study also provides important information on the physical characteristics and fruit color of some Elaeagnus angustifolia genotypes in the east and west Azerbaijan provinces. In general, the results of this study showed that there is high diversity among the studied genotypes.The results obtained might be helpful for breeding programs and introducing of cultivar in Elaeagnus angustifolia.
Seyedeh Zeinab Attari; Mahmood Shoor; Mahmoud Ghorbanzadeh Neghab; Ali Tehranifar; Saeid Malekzadeh Shafaroudi
Abstract
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods ...
Read More
Introduction: Some of Iris species are growing in different parts of the Iran as wild species. Iris species have important medicinal and horticultural properties. Understanding of the genetic variation within and between populations is essential for the establishment of effective and efficient methods for conservation of the plants. Genetic variation studies are fundamental for the management and conservation of this species. The use of molecular markers is a powerful tool in the genetic study of populations. The use of DNA marker, such as AFLP, SSR, RAPD and ISSR represents an alternative method in detection of polymorphism. ISSRs are highly variable, require less investment in time, money and labor than other methods. ISSR can generate higher percentages of polymorphic loci than other PCR methods. These can serve as an efficient tool for phylogenetic studies. ISSRs had reported that used in studies of cultivated species to produce genetic linkage maps and to determine the relatedness of lines of agriculturally important species. ISSR analysis involves the PCR amplification of regions between adjacent, inversely oriented microsatellites, using a single simple sequence repeat (SSR) motifs (dinucleotide, trinucleotide, tetranucleotide or penta nucleotides). Therefore, little is known about the genetic variability of the Iranian Iris ssp .The objectives of this study were to evaluate genetic diversity among genotypes using ISSR markers and the degree of polymorphism generated from ISSR technique as a pre-requisite for their applicability to population genetics studies in Iris ssp.
Materials and Methods: To evaluate genetic variations in some wild Iris genotypes, Iris kopetdaghensis ،Iris songarica and Iris fosteriana were collected from some parts of Khorasan province. Genomic DNA was extracted from young leaves following the cetyltrimethylammonium bromide (CTAB) procedure. Extracted DNA concentration was quantified by using the spectrophotometer and qualified using agarose gel electrophoresis. A total of 16 primers were initially screened against two plants selected from different regions and finally six primers for final analysis was selected based on consistent (CA)8G ،(CT)8RG ،(TC)8C ،(TG)8G ، (AC)8YG and (AG)8YT, strong amplification products, production of polymorph, reproducible fragments between replicate Polymerase Chain Reaction (PCR). The ISSR amplification reactions contained 30-50 ηg of genomic DNA, 2.5 μL 1 × buffer, 2 mM MgCl2, 200 μM of each dNTP (Fermentas), 10 μM primers and 0.2 U Taq DNA polymerase (Fermentas), with the final volume adjusted to 25μL with H2O bidest. ISSR reaction products were separated on 1.5% horizontal agarose gels, in TBE buffer and visualized under ultraviolet light after staining in 0.5μg/mL ethidium bromide. Digital photo was taken with gel documentation system. The 100 bp DNA ladder plus molecular weight marker was used to compare the molecular weight of amplified products. Amplified products were scored for the presence (1) or absence (0) of bands and binary matrices were assembled for the ISSR markers. The binary matrices were subjected to statistical analyses using NTSYS-pc software version 2.02.
Results and Discussion: Six ISSR primers produced 126 bands across the 16 genotypes, of which 119 were polymorphic. The number of amplified fragments varied from 16 [primer (CA)8G)] to 24 [primer (TC)8C and (AC)8YG)] across the genotypes. The average polymorphic bands per primer were 19.4. The percentage of polymorphism for primers ranged from 76 to 100, with an average of 94.4.The amplified bands genotypes related to a species the same banding pattern was observed but there was lower similarity between the species. Our data indicated that ISSR technology can detect considerable polymorphisms (76.4 %) in our genotypes, suggesting that it will be useful in characterization and fingerprinting of Iris germplasm. The results of this study also provide fundamental evidence demonstrate that ISSR marker is a simple, informative, reproducible and suitable approach to evaluation of molecular diversity and phylogenetic relationships in Iris spp. The highest genetic similarity was between species Iris kopetdaghensis and Iris fosteriana. This study revealed a significant variation especially between Iris kopetdaghensis and Iris songarica.
Conclusions: The results of cluster analysis showed that molecular markers able to identify the species and genotypes within a species from each other. Results of this study showed that the use of molecular markers in breeding programs, especially fingerprinting is useful for lily. ISSR molecular markers have proved to be an efficient tool for studying genetic diversity and management of lily germplasm. . Also the result showed these genotypes have high genetic diversity, and the success in Iris breeding programs use to recommend Iranian local Iris.