Growing vegetables
Farzad Abdollahi; Alireza Motallebi-Azar; Gholamreza Gohari; Bahram Dehdar; Amir Kahnamoii; Fatemeh Shariat
Abstract
IntroductionGrapheneis one of the new carbon nanomaterial that has unique physical properties and potentially important biological applications. Nanosheet Graphene Oxide has shown great potential to improve plant performance in various areas. Microtuber production technology is also used as a tool to ...
Read More
IntroductionGrapheneis one of the new carbon nanomaterial that has unique physical properties and potentially important biological applications. Nanosheet Graphene Oxide has shown great potential to improve plant performance in various areas. Microtuber production technology is also used as a tool to reduce the time needed to produce economic plant resources, increase the quality of seed tubers, and produce microtubers throughout the year. The aim of this study was to evaluate the effect of Nanosheet Graphene Oxide on the improvement of micropropagation and microtuberazation in potato var. Agria under in vitro conditions. Materials and MethodsSingle node explants obtained from in vitro virus-free plantlet (maintained in tissue culture laboratory, Department of Horticultural science, University of Tabriz) were cultured into modified Murashige and Skoog (MS) medium containing four concentrations of Nanosheet Graphene Oxide (0, 25, 50 and 75 mg/L) carried out in the completely randomized design (CRD) with four replications and kept at 25±2 degree centigrade and a photoperiod of 16 hours of light. The proliferation traits such as leaf length, leaf width, plantlet fresh weight, number of leaves and shoots were recorded. Then, single node explants were transferred to Murashige and Skoog (MS) medium with four concentrations of Nanosheet Graphene Oxide (0, 25, 50 and 75 mg/liter) and kept for two months in complete darkness and at 18±2 ºC and microtuber production indices such as microtuber number, diameter, length and weight, microtuberization percentage, shoot length, microtuber with dormancy were measured. Results and DiscussionThe results of analysis of variance showed that different concentrations of Nanosheet Graphene Oxide had a significant effect on all traits in proliferation and microtuberization stages. Among different levels of Nanosheet Graphene Oxide, application of 75 mg/L showed the best response for leaf length, leaf width, and plantlet fresh weight, followed by 50 mg/L for the number of leaves and shoots, and lastly, 25 mg/L for shoot length. At a concentration higher than 50 mg/L (75 mg/L graphene oxide), the number of leaves not only remained constant but also showed a decreasing trend. Effect of different NGO concentrations on the shoot length showed that there was no significant difference between different concentrations of NGO and the shoot length remained constant, but the difference between the control treatment and NGO was significant. The maximum shoot length was obtained at a concentration of 25 mg/l NGO. The different concentrations of NGO had significant effect on all microtuberization traits at 1% probability level. Mean comparison results for different concentrations of NGO showed that the highest value of the microtuber length, diameter and number were obtained at 25 mg/liter NGO. However, all microtuber traits were not increased at above 25 mg/liter NGO. With the increase in NGO concentrations, the yield of microtuber weight and microtuberization rate remain constant, and it is also possible that these traits will decrease significantly with the increase NGO concentration. The highest yield of microtuber weight and microtuberization rate were obtained at the 25 mg/L NOG, and higher concentrations did not increase them. There was a significant difference between different concentrations of NGO and the control treatment in the number of lateral shoots, so that the maximum number of lateral shoots was obtained at a concentration of 25 mg/L of NGO. Also, concentrations above 50 mg/L of NGO had less effect on the number of lateral shoots and with increasing concentration, the number of shoots decreased significantly. The maximum microtuber weight was obtained at high concentrations of NGO. In other words, with the increase of NGO concentration, the microtuber weight increased, and the most effective concentration was 75 mg/L of NGO for this trait. Although all concentrations of NGO are favorable for this purpose, it is possible that the concentration of 25 mg/l is the most NGO concentration. ConclusionThe results of this research showed that the of 50 and 75 mg/L of Nanosheet Graphene Oxide were the best concentrations micropropagation and microtuberization. 25 mg/L of Nanosheet Graphene Oxide was most efficient concentration . Although these experiments were performed without the use of growth regulators, the addition of Nanosheet Graphene Oxide to the medium increased micropropagation and microtuberization. Therefore, Nanosheet Graphene Oxide can be used as a tool for efficient micropropagation and increasing the quantity and quality seed tubers.
Abdolreza Ramezan Ghanbari; Iman Rohollahi
Abstract
Introduction: The genus Muscari has 47 species according to the World Checklist of Selected Plant Families. M. armeniacum, belonging to the family Asparagaceae, is cultivated in pots and gardens in the temperate regions. Muscari armeniacum is commonly known as grape hyacinth owing to its clusters of ...
Read More
Introduction: The genus Muscari has 47 species according to the World Checklist of Selected Plant Families. M. armeniacum, belonging to the family Asparagaceae, is cultivated in pots and gardens in the temperate regions. Muscari armeniacum is commonly known as grape hyacinth owing to its clusters of small, bell-shaped, cobalt-blue flowers that look like clusters of upside-down grapes. Traditional methods of propagation of Muscari species are rather slow, since the bulblet production from the mother bulbs is extremely low. Muscari as a cold resistance, bulbous flower with blue color and tendency to flowering many times can be used in many prospects. On the other hand, the color of M. neglectum is precious as natural pigment, and it has many beneficial and useful compounds that may support human health. Traditionally, scoring facilitated the in vitro and ex-situ propagation of bulbous flower. The manipulation of ploidy is a valuable tool in improving crops. Out of many applicable methods, the use of chemicals to induce changes in chromosome number has been well established. Colchicine has been successfully applied to induce polyploidy in a series of crop species. The chromosome reduplication of Muscari armeniacum can be induced with mixed and soaked colchicine.
Material and Methods: Mature bulbs of Muscari armeniacum were bought online (www.flowerbulbsholland.com). After treatments in first and second experiment, bulbs were cultivated in experiment garden. Polyploidy induction and viability percentage by colchicine and scoring in Muscari were evaluated separately in tow factorial experiment based on the completely randomized design with three replications for two years. In the first experiment colchicine, 0.05% by 12, 24 and 32 hours of soaking time under scoring (with scoring and without scoring) treatment were evaluated. Finally, morphological traits such as raceme length, leaf length, leaf number, leaf width, and peduncle length were evaluated and in second year morphological traits, as well as microscopic traits including stomata numbers, stomata densities, stomata length and width were evaluated. In the second experiment, colchicine 0.05 and 0.1% with 24 h soaking time and scoring (with scoring and without scoring) treatment in three replications were examined according to the first experiment details. Five well expanded leaves of each plant were selected to measurement and scoring the size and density of stomata. Three samples of epidermal cells were obtained from lower surface by nail varnish technique. A small area of abaxial side of leaves was covered with thin layer of clear nail polish and left to dry. After drying the polish, it was removed with a tip forceps then placed on a glass slide and observed through the light microscope at 400 x magnification and studided bu=y digital image processing and analysis. Stomatal density, length and width were measured for each image. Stomatal elongation was counted as the ratio of stomatal length and stomatal width.
Results and Discussion: Results of the first experiment showed the heights viability (100%) and flowering (55%) in non-scoring bulbs and 12 hours colchicine treatments. Also the lowest viability (55%) and flowering displayed in 32 hours colchicine and scoring treatments. At the second year of first experiment the highest viability percentage (75%) and flowering (10%) indicated in non-scoring bulbs and 32 hours colchicine treatment. The lowest viability (30%) and flowering (0%) percentage showed in 12 hours colchicine treatment with scoring bulbs. At the second year of first experiment 12 hours colchicine 0.05% significantly increased leaf width (0.63) and stomata width (0.015). Based on our results in the first experiment, in second experiment only 24 hours colchicine 0.1% treatment was evaluated. At the second year of second experiment colchicine and scoring interaction treatments had significant effects on stomata numbers. Bulbs that were scored and treated with colchicine 0.1% didn’t germinate and colchicine 0.05% decreased stomata density significantly compared to control.
Conclusions: The results of the experiment showed that colchicine 0.05% in 12 h of soaking time is one of the best treatment for Muscari polyploidy induction. Whereas, 32 h colchicine 0.05% treatment showed the highest flower percentage and viability in second year. Also, scoring and colchicine 0.1% had a negative effect on the viability and the flowering percentage. High colchicine concentration and scoring treatment decrease viability and flowering. Finally, colchicine 0.05% for 24 h without scoring could increase the possibility to induce ploidy.
Azimeh Hajisadeghian Najafabadi; Iman Roohollahi
Abstract
Introduction: Natanzi, a native pear cultivar of Iran, is one of the Iranian high quality and commercial pear. True plant type can be produced with in vitro micropropagation. Micropropagation used for species that have long generation time, low levels of seed production, or seeds that do not readily ...
Read More
Introduction: Natanzi, a native pear cultivar of Iran, is one of the Iranian high quality and commercial pear. True plant type can be produced with in vitro micropropagation. Micropropagation used for species that have long generation time, low levels of seed production, or seeds that do not readily germinate. Auxins in various concentrations are used for rooting depending on the different conditions of the tissue and culture medium. After propagation one of the problems with the production of plants through micropropagation is acclimatization. Low survival and poor growth of rooted seedlings in in vitro conditions after transferring to the environment, limits the use of tissue culture. The fungi symbiosis with root can enhance the success of this method. Natanzi pear propagation in Murashige and Skoog (MS) and propagated seedling acclimatization with mycorrhiza treatment were not reported. The aim of this study is evaluation the effects of various concentrations of BAP, IBA and GA3 on shooting, and NAA and IBA on rooting of Natanzi pear. In the second part of this experiment, the effects of mycorrhizal fungi on root development and absorption of phosphorus were evaluated.
Materials and Methods: In this study one-year branch buds of P.communis cv. Natanz from a wild mature tree native in village Tame, Natanz city, Isfahan Province, were used as plant material. Natanzi pear cutting were propagated supplemented with MS media under factorial experimental designs with three replications. Shoot proliferation in MS and MS with half concentration by BAP, IBA and GA3 were studied. Four different levels of IBA and NAA under light and dark condition for rooting were studied. After rooting plants were transplanted into 10 cm×12 cm plastic pots. Transplant was made in conditions of high ambient humidity to reduce damage to the plantlets. At transplant, pots were filled with different sterilized substrates, composed of mixtures of a coco peat:perlit and peat moss:perlit at a 1:1 (v/v) ratio. Substrates were wetted before filling the pots. At transplant, plants were inoculated with the AM fungus Glomus mosseae and G. intraradices, in the form of a mixture of spores, soil, and infected clover roots. Ten grams of inoculum were placed in each planting hole about 1 cm below the roots, for a total treatment. 10 g of the autoclaved mixed soil used for inoculated control treatment. Acclimatization, seedling survival, colonization, phosphorus concentrations and some morphological characteristics of root such as root characteristic were evaluated under G. mosseae and G. intraradices infection. Also two different bed, coco peat:perlite and peat moss:perlite at a 1:1 (v/v) ratio were examined. At the end of the experiment, Roots plants were stained to assess mycorrhiza colonization using Phillips and Hayman method (????). Colonization percentages of colonization were measured using Giovannetti and Mosse method. The total P concentration of plants was assessed using standard analytical techniques.
Results and Discussions: BAP (3 mg L-1) with IBA (0.5 mg L-1) is suitable of Natanzi pear proliferation under micropropagation condition. The highest rooting of Natanzi pear under in vitro condition were reported in MS and ½MS and 0.5 mg L-1 NAA under light and dark conditions, respectively. The results of experiments on Natanzi pear showed a positive effect of mycorhiza on the growth of infected seedlings compared to control treatments. Finally 100% of seedling were survived after acclimatization with mycorrhiza. Mycorrhiza increased the seedling length and root growth characteristics. No significant differences were observed in colonization of different mycorrhiza infection. Peat moss with no treatment (control) showed the most phosphorus concentrations and peat moss with G. mosseae mycorrhiza showed the most average root diameter.
Conclusions: BAP and IBA (3 × 0.5 mg L-1) showed significant effect on proliferation and NAA (0.5 mg L-1) on rooting in MS respectively. Peat moss with G. mosseae is suitable to increase the acclimatization of Natanzi pear seedlings. Mycorrhiza increased the length of seedling and root growth characteristics during eight weeks of acclimatization. Natanzi pear seedlings showed the highest growth under G. intraradices treatment in peat moss. G. mosseae showed a significant effect on the average root diameter in peat moss. Results of leaf phosphorus concentration and root colonization percentage showed that there was no significant correlation between phosphorus concentration and colonization percentage.
Azam Ranjbar; Noorollah Ahmadi
Abstract
Introduction: Miniature rose (Rosa hybrida) are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries ...
Read More
Introduction: Miniature rose (Rosa hybrida) are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries such as Denmark and Germany. Some treatments such as application of plant growth regulators and suitable rooting medium could be required for accelerating root formation in rose cuttings. Using plant growth regulators like natural or synthetic auxin is a pre-requirement for the initiation of adventitious root in some stem cuttings and it has been reported that the division of the first initiator cells of root depends on internal or synthetic auxin. Methods of application of these chemicals and suitable concentration could be related to several factors, importantly the plant varieties, type of cuttings and the time of cutting preparation. Various kinds of media such as soil, peat moss, perlite and vermiculite are used as bed substrate according to required ratio. Rooting media must provide appropriate moisture and air ventilation for cuttings establishment, which highly affect the cuttings root formation. Appropriate procedure for using wastes materials as culture bed, especially those materials that produced locally, is main aim of some studies to find an alternative medium in ornamental pot plant production. In this regards, evaluation of agricultural wastes to be used to culture bed and introducing suitable materials could be considered. Accordingly, the objective of the present study was to determine the effects of two types of plant growth regulators and bed combinations on rooting percentage of semi-hardwood cuttings in miniature rose.
Materials and Methods: In order to evaluate the effects of different concentrations of indolebutyric acid (IBA) and naphtaleneacetic acid (NAA), and two media with different composition on root formation of miniature rose stem cutting, this research was carried out as a factorial on the basis of randomized complete design (RCD) with three replications. Plant growth regulators including IBA at concentrations of 0, 1000, 2000 and 3000 mgl-1, concentrations of NAA at 0, 500, 1000, 1500 and 2000 mgl-1 were applied together with two types of rooting media. Media including mixing volume of perlite, tea waste compost and sand in a ratio of 1: 2: 2, and perlite, peat and sand in a ratio of 1:2:2 were mixed and applied in this experiment. Using SAS software, data was analyzed based on a generalized linear model (GLM) analysis and tested by least significant difference (LSD) at (P-value< 0.05).
Results and Discussion: Results showed that the highest rooting percentage of cuttings was obtained with 2000 mgl-1 of IBA, while no significant effect of NAA treatment and different rooting media on percentage of rooting was revealed. The two-fold and three-fold interaction of treatments on other measured traits such as primary and secondary root number and root diameter were significant. The two-fold interaction of NAA treatments and rooting media on the trait of primary root number were no significant. The highest root number and root diameter measured in medium containing perlite, tea waste compost and sand in a ratio of 1:2:2 for cutting received combined plant growth regulators.
Conclusions: Compost, the final product of organic residues degradation, improves soil physical characteristics such as soil aggregate formation and stability, water penetration, porosity, compressing resistance and nutrients availability. As well, it improves soil biological characteristics and in result, integration of compost with soil can increase growth, yield and quality of crop. There are also some evidences that in contrast of peat, compost contains plant growth regulators improved plant growth and development. Totally, considering our obtained results, in order to accelerate rooting formation in miniature rose cuttings, treatment of cuttings with synthetic plant growth regulators in medium containing perlite: tea wastes compost: sand (2:2:1) under alternate mist system is recommended. Organic materials activate root area as well as improving fertility of soil. They also play a role in supplying and releasing absorbable nutrients, root establishment, enhancing field capacity, reducing evaporation from soil surface and reducing expenses. Therefore, we emphasize on appropriate using of these components in order to obtain better productivity.