Pomology
M. Nezami; M.R. Fatahi Moghadam; A. Ebadi; Z. Zamani
Abstract
IntroductionStrawberry is known as one of the most important temperate small fruits which is cultivated in the field, greenhouse and high tunnels in the most regions of the world. The role of gibberellin and auxin in increasing fruit size of strawberries have been reported. One of the major problems ...
Read More
IntroductionStrawberry is known as one of the most important temperate small fruits which is cultivated in the field, greenhouse and high tunnels in the most regions of the world. The role of gibberellin and auxin in increasing fruit size of strawberries have been reported. One of the major problems of strawberry production in greenhouse is the fruits malformation which has reduced the market value of the fruit. Gibberellin and auxin have been different effects in vegetative and reproductive of growth stages. The purpose of this research was to improve the vegetative and reproductive indices of the fruit and to control the malformation problem by stimulating the development of seeds on the fruit and stimulating the growth of the fruit receptacle by gibberellin GA3. Materials and MethodsExperiments were conducted in a commercial greenhouse in Karaj, Hashtgerd New City, Phase 7 during 2017-2019. Two separate experiments (spraying hormones on whole plant or immersing individual fruitlets on hormone solution) were designed and implemented in a commercial greenhouse unit. In the first experiment: GA3 was at concentrations of 50, 100 and 150 ppm and IBA at concentrations of 20, 40 and 60 ppm in growth stages of 60 and 65 according to BBCH worldwide model. In the second experiment, fruits were immersed in NAA with concentrations of 20, 40 and 60 ppm and GA3 with concentrations of 25, 50 and 100 ppm at fruit growth stages 70 and 73 according to BBCH procedure. After reaching the red stage, the fruits were manually harvested and transferred to the laboratories for additional tests. Vegetative and reproductive traits were evaluated including leaf area, number of leaves, crown circumference, plant height, number of flowers and fruit dimensions. Fruit biochemical characteristics include: total soluble solids, titratable acid content of fruit, anthocyanin and antioxidant capacity, total phenolics, catalase and superoxide dismutase enzymes activities and content of vitamin C were evaluated. The experiments were designed and implemented in the frame of a randomized complete block design. The data were analyzed by SAS ver.9.4 and SPSS ver. 22 software, the mean data were compared based on Duncan's multi-range test, and the graphs were drawn by Excel 2013 software. Results and DiscussionFoliar spraying with gibberellin had a significant effect on several characteristics, including leaf area, crown circumference, number of flowers, and plant height at the 1% level of significance. However, it did not yield a significant impact on the attribute of leaf number. The increase in vegetative growth could be due to the synthesis of more amino acids in the stimulation of gibberellin treatment. Gibberellin treatments increased the vegetative growth of the plant and increased the number of flowers, but their growth was stopped after fruit formation and no fruits were formed in gibberellin spraying. This can be due to the existence of an antagonistic relationship between vegetative parts and fruit developments. Auxin hormone treatments had a significant effect on increasing fruit size and reducing the percentage of malformed fruits. GA3 at concentration of 50 ppm improved plant vegetative characteristics such as: plant leaf area, plant crown circumference, plant height and number of flowers, while IBA reduced fruit deformity by 40% and also increased the amount of total soluble solids, the titratable acid content of the fruit and the antioxidant content of the fruit. In general, gibberellin at a concentration of 50 ppm in order to increase plant vegetative indices and auxin at a concentration of 60 ppm were statistically effective. In second experiment, it seems that three levels of gibberellin treatment have increased all traits related to fruit compared to auxin and control. GA3 at a concentration of 100 ppm, causing an increase in fruit size, fruit weight and the biochemical properties of the fruit and the deformity decreased by 37/5% while NAA at a concentration of 60 ppm increased the amount of fruit anthocyanin as well as total fruit phenolics and vitamin C content. ConclusionIn the first experiment, gibberellin foliar application at a concentration of 50 ppm had the greatest effect on vegetative growth indicators. Also, in the same experiment, it was found that the use of GA3 in high concentrations has the negative effects on flowering and fruit growth., while it increases the amount of runner production. Also, IBA at a concentration of 60 ppm was the most effective treatment in fruit indices. In the second experiment, gibberellin at a concentration of 100 ppm was the most effective treatment in fruit and its biochemical traits, while NAA auxin in the second experiment showed a lower response to fruit than IBA auxin in the first experiment.
Pomology
Behzad Kaviani
Abstract
Introduction: The use of biofertilizers instead of chemical fertilizers has an effective role in increasing the health of plants, animals and humans and reducing environmental pollution. Biofertilizers are gradually being replaced by chemical fertilizers. Strawberry is a fruit with high nutritional value. ...
Read More
Introduction: The use of biofertilizers instead of chemical fertilizers has an effective role in increasing the health of plants, animals and humans and reducing environmental pollution. Biofertilizers are gradually being replaced by chemical fertilizers. Strawberry is a fruit with high nutritional value. Choosing the right nutritional conditions such as fertilizers and suitable cultivation beds to achieve high quantitative and qualitative yield in this plant is inevitable. In recent years, the use of humic acid has been common in enhancing the vegetative and generative characteristics of crops. Humic acid is a rich source of potassium, phosphorus and nitrogen. The method of application of humic acid has an effective role in improving the quantitative and qualitative characteristics of plants. The leaf application of humic acid was effective in increasing the amount of phosphorus, potassium and nitrogen. The amount of potassium and phosphorus in strawberry fruit is more than other elements. Combining some cultivation beds (perlite and composts) and fertilizers such as agricultural waste (rice bran and tea wastes) into soil cultivation beds have an effective role in improving the quantity and quality of plants.Materials and Methods: A pot experiment was conducted to evaluate the effect of foliar application of humic acid and different cultivation beds on nutrition uptake of strawberry. Different concentrations of humic acid (0, 300, 600, and 1000 mg.l−1) were applied as foliar application in two steps (late March and late April) on strawberry cultivated in different beds (usual soil, usual soil + rice bran, perlite, or tea wastes). This study was carried out as two factorial experiment in completely randomized design. Soil nitrogen, phosphorus and potassium, soil pH and electrical conductivity and leaf and fruit nitrogen, phosphorus and potassium content were measured. Measurement of nitrogen, phosphorus and potassium was carried out by Kjehldal, spectrophotometry and flame photometry, respectively.Results and Discussion: The interaction effect of humic acid ×cultivation beds on nitrogen and phosphorus content of leaves and fruits was significant at 1% of probability level and on fruit potassium at 5% of probability level. The interaction of these two factors on leaf potassium was non-significant. The results of comparing the mean comparison of humic acid and cultivation beds on soil elements showed that the highest amount of nitrogen was obtained in the treatment of 600 mg.l−1 humic acid and in the cultivation bed of usual soil+rice bran. The highest amount of phosphorus was obtained in the treatment of 1000 mg.l−1 humic acid and the cultivation bed of usual soil + tea wastes. The highest amount of potassium was obtained in the treatment of 600 mg.l−1 humic acid and in the cultivation bed of usual soil + tea wastes and the lowest one was obtained in the same bed without humic acid. Results showed that the highest potassium content (518 mg.l−1), and phosphorus (4.84 mg.l−1) of fruit were obtained in plants treated with 1000 mg.l−1 humic acid cultivated in usual soil + rice bran. The highest nitrogen content of fruit was obtained in plants cultivated in usual soil +tea wastes. The plants grown in this cultivation bed with humic acid application at 1000 mg.l−1 had maximum content of leaf nitrogen (5.47%). The highest content of leaf potassium (4.50 mg.l−1) and phosphorus (6.32 mg.l−1) were obtained in plants treated with 600 mg.l−1 humic acid in the cultivation beds of usual soil and usual soil + rice bran, respectively. The application of humic acid at 1000 mg.l−1 and using usual soil+rice bran as bed is recommended for strawberries production as potassium, phosphorus and nitrogen are the most important elements for increasing the quality of strawberry fruits , respectively. A positive association has been reported between the use of humic acid and the increase in growth, yield and product quality in strawberries and other plants. Humic acid can improve quantitative and qualitative production of crops by providing more available essential elements and increasing plant resistance to various biological and non-biological stresses.Conclusion: Strawberries are widely cultivated worldwide due to their high nutritional value. Chemical fertilizers have been used as a way to increase crop yields, but have led to problems such as nitrate accumulation, short pot life, and poor quality and environmental pollution. Therefore, organic fertilizers have been recommended. A stimulating effect of humic acid on biomass production and plant growth is to increase the uptake of nitrogen, phosphorus and potassium. Proper cultivation bed plays an important role in the optimal growth and development of plants. According the result of this study, the use of beds containing agricultural waste and foliar application of humic acid increased the growth, yield and quality of strawberry fruit.
Pomology
Mohammadreza Safari Motlagh; Behzad Kaviani; Jaleh Ashegh
Abstract
Introduction: In recent years, applying humic acid has been common in enhancing the quantitative and qualitative characteristics of crops. The use of biofertilizers instead of chemical fertilizers has an effective role in increasing the health of plants, animals, and humans, and reducing environmental ...
Read More
Introduction: In recent years, applying humic acid has been common in enhancing the quantitative and qualitative characteristics of crops. The use of biofertilizers instead of chemical fertilizers has an effective role in increasing the health of plants, animals, and humans, and reducing environmental pollution. Chemical fertilizers are gradually being replaced by biofertilizers. Strawberry is a fruit with high nutritional value. Choosing the right nutritional conditions such as fertilizers and suitable cultivation beds to achieve high quantitative and qualitative yield in this plant is inevitable. In recent years, the use of humic acid has been common in enhancing the vegetative and generative characteristics of crops. Humic acid is a rich source of potassium, phosphorus and nitrogen. The method of application of humic acid has an effective role in improving the quantitative and qualitative characteristics of plants. Combining some cultivation beds such as perlite, composts, and fertilizers including agricultural waste (such as rice bran and tea wastes) into soil cultivation beds have had an effective role for improving the quantity and quality of plants. Materials and Methods: A pot experiment was conducted to evaluate the effects of foliar application of humic acid and different cultivation beds on morphology, flowering and fruiting of two strawberry (Fragaria × ananassa) cultivars ‘Local’ and ‘Selva’ in Islamic Azad University, Rasht Unit, on 2016. Different concentrations of humic acid (0, 300, 600, and 1000 mg l−1) were applied as foliar application in two steps (late March containing three leaves and late April containing five leaves) on strawberries cultivated in different beds (usual soil and usual soil with rice bran, or perlite, or tea wastes). The experiment was carried out as factorial based on a randomized complete block design (RCBD) with four replications. Some traits including plant height, root number, root length, leaf length, shoot number, shoot length, shoot diameter, leaf number, node number, flowering time, flower diameter, flower number, fruit number and fruit weight were measured. Results and Discussion: Analysis of variance showed that the interaction effect of humic acid × cultivation bed ×cultivar on plant height, shoot length, shoot number, leaf number, root length, root number, flower diameter (p≤0.01), fruit weight, and fruit number (p≤0.05) was significant. The interaction effect of these three factors on shoot or stolon diameter, leaf length, flowering time and flower number was not significant. Results of mean comparison showed that the highest shoot or stolon number (14.82) were obtained in ‘Selva’ cultivar treated with 1000 mg l−1 humic acidcultivatedin usual soil with tea wastes. The highest fruit weight (35.45 g) and fruit number (15.41 per plant) were obtained in ‘Selva’ cultivar treated with 1000 mg l−1 humic acidcultivatedin usual soil with perlite. The maximum leaf number (16.03 per plant) was obtained in the treatment of 300 mg l−1 humic acid and the cultivation bed of usual soil and rice bran in ‘Local’ cultivar. Minimum fruit number (3.58) and fruit weight (8.23 g) were obtained in ‘Local’ cultivar cultivated in usual soil bed without humic acid. The highest number of root (19.56) was obtained in the treatment of 600 mg l−1 humic acid and the cultivation bed of usual soil with perlite in ‘Local’ cultivar. The highest amount of flower diameter (7.85 mm) was calculated in the treatment of 1000 mg l−1 humic acid and the cultivation bed of usual soil with tea wastes on ‘Selva’ cultivar. These results suggest that humic acid foliar application might be benefit to enhance fruit characteristics of strawberry. Totally, humic acid application increased growth and yield of strawberry. Since the most important parameters for increasing the quality of strawberry fruit is fruit characteristics, it is recommended to use 1000 mg l−1 of humic acid cultivated in the usual soil mixture with tea wastes. Strawberries are widely cultivated worldwide due to their high nutritional value. Chemical fertilizers have been used as a way to increase crop yields, but have led to problems such as nitrate accumulation, pot life, and poor quality and environmental pollution. Therefore, organic fertilizers have been used. Humic acid can improve quantitative and qualitative production by having properties such as providing more available essential elements and increasing plant resistance to various biological and non-biological stresses. A positive association has been reported between the use of humic acid and the increases in growth, yield and product quality in strawberries and other plants. Proper cultivation bed plays an important role in the optimal growth and development of plants. Salinity increases osmotic stress, ion toxicity, oxidative stress and food imbalance. The use of compost fertilizer and foliar application of humic acid increased the growth, yield and quality of strawberry fruit.
Hamidreza Rahmani; Ebrahim Mohammadi Goltapeh
Abstract
Introduction: Strawberry as an herbaceous perennial plant, belongs to the Rosaceae family, which is considered as an important plant, due to having various types of vitamins such as C, A, B6, E. Nowadays, the excessive use of chemical fertilizers instrawberry productionin order to increase yields, has ...
Read More
Introduction: Strawberry as an herbaceous perennial plant, belongs to the Rosaceae family, which is considered as an important plant, due to having various types of vitamins such as C, A, B6, E. Nowadays, the excessive use of chemical fertilizers instrawberry productionin order to increase yields, has resulted in environmental pollution and dangers on the health of consumers. Microbial endophytes are considered as the most important soil microorganisms with genetic, physiological and ecological impacts in their host plants, increasing the yield. Pirifomosporaindica is a member of Basidiomycetes in order Sebacinales.The fungus is easily cultivable, lacks host specificity and colonizes roots of many different plants, mostly in an endophytic fashion. It interacts with a wide range of hosts, including bryophytes, pteridophytes, gymnosperms and a large number of mono- and dicot plants. The fungus grows inter- and intracellularly, forms pearshaped, auto fluorescent chlamydospores within the cortex of the colonized roots and in the rhizosphere zone, but it does not invade the endodermis and the aerial parts of the plants. The fungus promotes nutrient uptake, allows plants to survive under water, temperature and salt stresses, and confers systemic resistance to toxins, heavy metal ions, insects and pathogenic organisms. In this study,the effectson the flowering and root growth parameters of strawberry in hydroponic culture was examined in a completely randomized design with 28 replicationsundergreenhouse condition of Faculty of Agriculture,TarbiatModarres University.
Materials and Methods: This research was conducted in the greenhouse of faculty of agriculture TarbiatModarres University.Fungi used in this study was prepared of fungi collection of the Department of Pathology, University of TarbiatModarres. Endophytic fungus roots was cultured in solid medium Kafer.For this study, 140 strawberry runners were prepared and then put them in a pots with diameter of 25 and height of 30 cm was cultivated in perlite and cocopeat.Two weeks afterestablishment roots, concentrations, 0 (control), 80, 160, 250 and 330 spores/ml of endophytic fungus P. indica was inoculated by injecting around roots of strawberry plants. Temperature and humidity conditions needed for fungal growth were provided in the strawberry’s greenhouse and were irrigated with a nutrient solution three times per day. Eight month after fungal inoculation flowering content was measured for all pots. One week after the last harvest length, Fresh and dry weight roots were measured. Data is transferred to excel software and then analyzed using SAS 9.1 software and comparison of means using Duncan test was conducted.
Results and Discussion: Analysis of variance showed that among treatments there is significant difference on growth parameters of strawberryplants (P < 0.01),soby increasing concentration of fungi increased growth parameters and this indicate the positive impact of the endophytic fungus onthe growth parameters of strawberry plant is inoculated with the fungus than the control plants. Results showed that the maximum and minimum effects of fungal on growth parameters related to 330 sp/ml and control treatments, respectively. flowering content showed 37 and 18.53 percent increase respectively under 330 and 250 spores/ml compared to control which can be related to absorb more nutrient elements, especially phosphorus and biomass of strawberry plants. Root dry (76.71 and 52 percent) and fresh (75.52 and 40 percent) weights were increased under 330 and 250 spores/ml treatment compared to control and were significantly different with other treatments (P < 0.05), while there was no significant difference among control, 80 and 160 spores/ml treatments. Regarding to root length, 330, 250 and 160 spores/ml treatments resulted in 72, 37 and 14.33 percent increase respectively compared to control and showed a significant difference with other treatments. In this respect, it can be stated that P. indica at high concentrations due to the increase production of auxin that increased the root length, root dry and fresh weight is inoculated plants compared to control that increase root growth parameters which cause absorb more nutrient elements from soil.
Conclusions: It can be concluded that high concentrations of the fungus P. indica can increase physiological characteristics (the flowering, root length and dry weight and fresh weight) of strawberry plants. and thus it has a positive effect on plant growth and yield.
Mohammad Reza Asghari; Farhad Asghari
Abstract
The effect of different concentration of salicylic acid (0, 1 and 2 mmolL-1) and chitosan (0, 0.5 and 1 percent) on postharvest life and quality of Selva strawberry fruit during storage at 2.5±0.5°C with 85-95% RH for 7 and 14 days was studied. Decay incidence, marketability, total soluble solids, ...
Read More
The effect of different concentration of salicylic acid (0, 1 and 2 mmolL-1) and chitosan (0, 0.5 and 1 percent) on postharvest life and quality of Selva strawberry fruit during storage at 2.5±0.5°C with 85-95% RH for 7 and 14 days was studied. Decay incidence, marketability, total soluble solids, total acidity, vitamin C content and total antioxidant activity were evaluated during storage. chitosan 1% significantly decreased decay incidence and maintained fruit marketability. 1mmolL-1 of salicylic acid in combination with 1% chitosan significantly retained fruit soluble solids, vitamin C content and total antioxidant activity and was more effective on total antioxidant activity during first week of cold storage. 1 and 2 mmolL-1 salicylic acid retained total acidity.