Growing vegetables
K. Poorhossein; B. Abedy; M. Shoor
Abstract
Introduction
Urban agriculture, as one of the basic features of urban planning, helps to increase the quality of urban life due to its cultural, economic and social benefits. However, pollution with heavy metals in cities causes the accumulation of these metals in different parts of planted plants and ...
Read More
Introduction
Urban agriculture, as one of the basic features of urban planning, helps to increase the quality of urban life due to its cultural, economic and social benefits. However, pollution with heavy metals in cities causes the accumulation of these metals in different parts of planted plants and also the risk of consuming them for food in urban green spaces.
Materials and Methods
This study was conducted to assess the amount of heavy metal absorption and its effect on some biochemical and physiological properties of peppermint plant (Mentha piperita L.), in Mashhad city in 2021.The experiment was carried out as a factorial based on randomized complete block design with three replications. The first factor (location) were phase 4 Park (with high degree of contamination) and Nasim Park (with low degree of contamination). The second factor was the times of harvest (June15, July15 and August 15). At the time of every harvest fully developed leaves were collected to evaluate the traits.
Results and Discussion
The results of analysis of variance indicated that the effect of location was significant on all traits except for the yield of essential oil. Also, the effect of harvest time was significant on all traits except for peroxidase activity and the yield of essential oil. However, the interaction of location and harvest was significant only on phenol, flavonoid, proline, cadmium and lead concentration. The results indicated that the ascorbate peroxidase, catalase and peroxidase activities were higher in phase 4 Park. Moreover, the highest activities of ascorbate peroxidase, catalase and peroxidase were recorded in phase 4 + first harvest. Heavy metals cause the production of reactive free radicals and also increase the activity of antioxidant enzymes. However, the chlorophyll a, b, carotenoid and total chlorophyll contents were higher in Nasim. Thus, the highest contents of Chla, Chlb, Chltotal and carotenoid were observed in Nasim + first harvest. The higher amount of chlorophyll and carotenoids in the first harvest is due to the optimal growth conditions such as day length and sunlight and ambient temperature. In addition, total phenol, flavonoid, proline, Cd and Pb elements indicated a reducing trend in phase 4 compared to Nasim Park in different harvest times, but the amount of these traits were higher in the first harvest than in the subsequent harvests. Increased amount of total phenol in the first harvest can be related to the high air temperature at the first harvest which caused stressful conditions in this stage. Proline production also increases under heavy metal stress to help protect the plant against toxicity. However, the percentage of essential oil showed an increasing trend with enhanced absorption of Pb and Cd in phase 4 compared to Nasim Park. The higher percentage of essential oil in phase 4 may be attributed to reduced leaf growth due to the higher presence of heavy metals in that area.
Conclusions
Overall, while the concentration of Pb exceeded the global standard level in both parks, contamination with Cd and Pb (especially Pb) was greater in phase 4 than in Nasim Park, contributing to reduced growth traits in peppermint plants. Regarding harvest times, the first harvest exhibited better growth characteristics and higher absorption of heavy metals due to the plant's greater vigor. In contrast, the third harvest showed lower growth characteristics and weaker absorption of Pb and Cd, likely due to the energy expended for regrowth.
Breeding and Biotechnology of Plant and Flower
Marzieh Ghorbani; Khosro Parvizi; Mohammad Yazdandoost Hamedani; Darab Hassani
Abstract
Introduction
In our country, walnut tree propagation is traditionally done through seed cultivation, often resulting in seed rot and death due to fungal, bacterial, and viral contamination (MC Granahan et al., 1986; Driver & Kenyuki, 1984; Saadat & Henry, 2002). The traditional method, in addition ...
Read More
Introduction
In our country, walnut tree propagation is traditionally done through seed cultivation, often resulting in seed rot and death due to fungal, bacterial, and viral contamination (MC Granahan et al., 1986; Driver & Kenyuki, 1984; Saadat & Henry, 2002). The traditional method, in addition to low multiplication rates, leads to high variation in resulting seedlings, potential loss of seedlings due to contamination, and reduced efficiency in subsequent stages (Unit, 2012; Kaur et al., 2006). Previous research has mainly utilized concentrations of one milligram per liter of benzyl adenine along with small amounts of indole butyric acid for Iranian walnut growth and enrichment (Rodrigues, 1982; Revilla et al., 1989; Penuela, 1988; Mejzadeh et al., 2010, 1997; Amiri & Qaraati, 2012; Riosleal et al., 2012). This research aims to build upon and optimize previous work, evaluating the effectiveness of different concentrations of two growth regulators, benzyl aminopurine and adenine sulfate, on walnut plantlet regeneration and growth traits in tissue culture.
Materials and Methods
This study was conducted to optimize the tissue culture protocol for the "Chandler" cultivar walnut and determine the most suitable culture medium and hormonal composition for micropropagation. Lateral and terminal buds from the current season's branches were sterilized and cultured in DKW medium containing 2 mg/liter of benzyl adenine hormone and 100 mg/liter of indole butyric acid hormone, with polyvinyl pyrrolidine at one g/liter and activated charcoal at 2 g. Two-factorial experiments were used to process and multiply the plant after the establishment phase. The first factor was DKW culture medium containing five levels of adenine sulfate (0, 20, 40, 60, and 80 mg/liter), and the second factor was benzylaminopurine plant growth regulator with five hormonal levels containing 0, 0.5, 1, 1.5, and 2 mg/liter in combination with 0.01 mg/liter of indole butyric acid hormone. DKW base culture medium without any plant growth regulating substances was considered as control. After two months, growth traits including plantlet weight, stem length, number of leaves, number of buds, and number of leaflets per plantlet were measured in different culture media. The resulting data were statistically analyzed using SAS 9.1 software, and means were compared using Duncan's multiple range test with a five percent probability level.
Results and Discussion
The analysis of variance showed that both plant growth regulators, benzyl aminopurine and adenine sulfate, had a very significant effect at 1% probability level on plantlet weight, stem length, number of leaves, number of buds, and number of leaflets. The interaction effect of benzyl aminopurine with adenine sulfate treatment on plantlet weight and stem length was significant at the 1% probability level. However, the interaction effect of benzyl aminopurine with adenine sulfate treatment on the number of leaves, number of buds, and number of leaflets was not significant. The results indicated that an increase in the levels of growth regulators benzyl aminopurine and adenine sulfate led to an increase in plantlet weight. The positive effects of increasing the levels of growth regulating substances in increasing plantlet weight are likely due to their direct effect on nutrient absorption, utilization, and the photosynthesis process. These results align with the research of Hatemzadeh et al. (2017) and Saadat and Henrati (2002). The positive effects of higher concentrations of both growth regulators on the increase in the number of sprouts and the lack of significant difference between the two high concentrations confirm that the use of high levels does not exceed the economic threshold. It can be justified that in excessive and unconventional concentrations, positive effectiveness is not achieved, but it can also impose more costs on the walnut tissue culture program. The appropriate concentration of BAP and adenine sulfate increases the leaf surface through the effect on cell divisions, resulting in receiving more light radiation and increasing the rate of photosynthesis. It seems that the two growth regulating substances in the appropriate concentration intensified each other's effect, affecting the rate of absorption and utilization of materials from photosynthesis, leading to an increase in the fresh and dry weight of the seedling. This, in turn, leads to a decrease in the length of the reproduction period in the resulting seedlings and an increase in the efficiency of the seedling production in walnut tissue culture.
Conclusion
The use of both studied growth regulators significantly increased plantlet weight, stem length, number of leaves, number of buds, and number of leaflets compared to the control treatment. Plantlet growth was achieved with the use of plant growth regulators, whereas no growth was observed in their absence. All assessed traits increased significantly with the addition of plant growth regulators, with the highest trait values obtained through the simultaneous use of benzylaminopurine and adenine sulfate.
Ornamental plants
Mojdeh Osku; Azizollah Khandan Mirkohi; Roohangiz Naderi
Abstract
Introduction The genus Chlorophytum (also known as spider plant) which is mainly cultivated as an ornamental plant for its slash and colored leaves, specifically distributed in the pantropic regions. It is a perennial rhizomatous plant with often short and indistinct rhizomes, while with thicker ...
Read More
Introduction The genus Chlorophytum (also known as spider plant) which is mainly cultivated as an ornamental plant for its slash and colored leaves, specifically distributed in the pantropic regions. It is a perennial rhizomatous plant with often short and indistinct rhizomes, while with thicker or slightly fleshy roots. The roots of these species are considered as one of the important phytochemical components. the use of Chlorophytum comosum as a contaminant accumulator has already been documented in the literature.This plant is a soil conditioner and can absorb lead, cadmium, Se and As while its leaves accumulate mercury. It is also able to absorb toxic organic pollutants such as formaldehyde and benzene and is also able to retain CO2. Leaf surface morphology has been shown to affect the ability of a particular plant to retain contaminants. Chlorophytum comosum introduced as a plant that requires high nitrogen. Nitrogen is an essential macro element for the growth and development of plants which involved in many physiological reactions and it is one of the elements that plants need in all their activities. The effect of N form on plant growth depends on plant species and nitrogen level of the soil. Plants absorb both ammonium (NH4+) and nitrate (NO3-) from soil solution, and these two mineral forms are their most important sources of nitrogen to supply the plant demand. Absorption of ammonium by plants requires less energy than absorption of nitrate. It seems that most plants have the best performance in a certain ratio of nitrate to ammonium (NO3-/NH4+ ratio). This ratio seems to regulate the distribution of absorbed nitrogen between the branches and roots. It may also vary between species. The optimal ratio may also depend on the environmental conditions such as pH, light intensity, and root zone temperature. This study was performed to determine the effect of different levels of ammonium nitrate on growth, yield factors and ornamental aspects of the spider plant as a desired ornamental product. The use of ammonium nitrate to meet the houseplants demand considering the supply of both types of nitrogen sources, increases the yield and quality of these plant. However, despite the importance of the nitrogen in the performance of this ornamental plant (Chlorophytum comosum), the desired amount of nitrogen for its growth and quality has not yet been reported. Therefore, the present study was conducted to investigate the effect of different levels of ammonium nitrate on the growth and physiological characteristics of spider plant to find the best level of application of ammonium nitrate fertilizer as an easily available source to increase the growth and visual quality of this plant.Materials and Methods This research was conducted based on randomized complete block design (RCBD) with four treatments and three replications. Treatments include four levels of ammonium nitrate of 100 (control), 200, 400, 600 mg-1 kg of soil. Treatments applied first at the substrate preparation process and then was applied in the one third depth of each pot, monthly. Desired factors such as morphological characteristics (plant height, leaf number, stolon number, fresh weight, dry weight, root fresh weight, root dry weight, root volume, root depth, root length, pot weight, leaf area) and physiological characteristics (total chlorophyll, total protein, texture nitrate and proline) were evaluated. Also soil analysis was performed before starting of the experiment. Statistical analyses of the data for examined traits were performed using SAS software and comparisons of means using Duncan's multiple range test, at 5% probability level.Result and Discussion The results indicated that the application of ammonium nitrate fertilizer significantly improved most of the studied traits. Supplying ammonium nitrate fertilizer at desired level meet the nitrogen demand of Spider plant during the growth and improved production of biomass. The plant height, leaf number, fresh weight, dry weight, root fresh weight, root dry weight, and leaf area were increased by increasing ammonium nitrate level. Nitrogen fertilizers play an important role for increasing plant yield by expanding shoots and producing sufficient carbohydrates. In addition to plant growth, they also affect plant morphology. Maximum amount of protein, nitrate of tissue and total chlorophyll observed in 400 mg-1kg of ammonium nitrate level. Nitrogen is one of the essential elements that plays an important role in the production of chlorophyll and protein, therefore the use of nitrogen fertilizers leads to synthesis of chlorophyll and protein at higher level. The highest amount of proline (11.20 μg-1 mL) was measured at 600 mg-1kg of ammonium nitrate level and the lowest (3.57 μg-1 mL) in the control, because with high consumption of nitrate, the plant needs more water and nitrogen is a structural component of proline. Accumulation of proline helps the plant to survive and recover after drought stress.Conclusion According to the results of our experiment, application of nitrogen fertilizer had a positive effect on growth, and consequently led to increase the plant vegetative yield. Treatment of 400 mg-1kg of ammonium nitrate level increased growth and yield factors and the ornamental aspect of Spider plant as a desired ornamental crop. Application of 400 mg-1kg of ammonium nitrate level are recommended to access an acceptable quantitative and qualitative yield in this plant.
Norollah Moallemi; Esmaeil Khaleghi; Zeinab Jafari zadeh
Abstract
Introduction: Plant establishment is difficult in some arid and semi-arid regions of Iran because of lacking rainfall and inadequate distribution and extreme heat. Previous studies stated that plant water parameters and growth characteristics such as plant height, fresh and dry weight of root, stem and ...
Read More
Introduction: Plant establishment is difficult in some arid and semi-arid regions of Iran because of lacking rainfall and inadequate distribution and extreme heat. Previous studies stated that plant water parameters and growth characteristics such as plant height, fresh and dry weight of root, stem and leaf, which is known as the first reaction of plants, were decreased under drought stress. Therefor it is necessary to use practices with objectives to decease the effects of drought stress on plants and increasing water use efficiency. Several studies showed that various morphological and physiological characteristics in plants were influenced by ascorbic acid. In fact, ascorbic acid increased plant resistance to drought stress. The purpose of this research was to investigate the effect of ascorbic acid application on growth traits of ‘Baghmalek’ olive under 100%, 66% and 33% ETcrop < /sub> by analyzing growth traits and relative water content, stem water potential and stomata resistance. Material and Methods: This research was carried out in order to assess the effects of three levels of water deficit (100, 66 and 33 percent of evapotranspiration (ETcrop < /sub>)) and four concentrations of ascorbic acid (0, 250, 500 and 750 mg l-1) on some growth and physiological parameters of young olive plants cv. ‘Baghmalek’as a factorial experiment based on a randomized complete block design with three replications. Fresh and dry root, stem and leaf weight, leaf number, leaf area, stem diameter, relative water content, stem water potential and stomata resistance were measured in this research. Two years old olive trees (Olea europaea cv. ‘Baghmelak’) were used. Seventy two plants were grown in 10 L pots, containing a mixture of field soil: sand: manure (1:1:1). Plants were sprayed with four concentrations of ascorbic acid and irrigated every 10 days, based on the amount of evapotranspiration of plant (ETcrop < /sub>). Parameters such as relative water content, stem water potential and stomata resistance were measured at last week of the experiment and the other parameters were measured every week. Data analysis were performed using MSTATC software and means comparison were carried out by Duncan's multiple range test (DMRT) at 5% and 1% of probability levels. Results and Discussion: The results indicated the growth quality was better in plants treated with 250 mg l-1 ascorbic acid under water stress. Fresh and dry weight of root, stem and leaf growth, stem diameter, leaf number, leaf area were higher in plants treated with 250 mgl-1 ascorbic acid than untreated plants. Interaction between water deficit stress ×ascorbic acid revealed information in plant characters such as fresh and dry weight, stem diameter and leaf area simply declined as sources of water (from 100 to 66 and 33 percent) become limited, in particular in the trees which not receiving ascorbic acid treatments. However, application of 250 and 500 mg l-1 ascorbic acid enhanced the amount of relative content of leaf and water potential of stem in trees under water deficit stress. While stomata resistance was decreased in trees receiving ascorbic acid treatments. Some researcher declared that limitation of photosynthesis could be one of the most important factors for decreasing growth under water deficit stress. In addition, relative water content, cell turgor potential, reduced cell division, cell enlargement and growth plant could be affected by water deficit stress. Also the results indicated that leaf area (5952 cm), leaf number (151.7), stem diameter (6.49 mm), stem length (63.33 cm), root dry weight (18.16 g) and leaf fresh weight (9.35 g) were obtained in irrigated plants with 33% ETcrop < /sub> and untreated with ascorbic acid. Our results showed leaf number (158.7), stem length (74 cm), root fresh weight (78.08 g), stem fresh and dry weight (46.45 and 28.43 g, respectively) and leaf fresh and dry weight (13.35 and 8.45 g, respectively) were highest in irrigated plants with 100% ETcrop < /sub> and treated with 250 mg l-1 ascorbic acid. Conclusion: Water deficit stress could affect directly on relative water content, cell turgor potential and reduce cell division, cell enlargement, plants photosynthesis and plant growth. The use of ascorbic acid could effect on plants resistance to drought. In addition, various morphological and physiological traits could be influence by ascorbic acid. The results of this research indicated that 250 mg l-1 ascorbic acid concentration had more effects on water deficit and it seems ascorbic acid can be used to reducing the negative effects of drought in some regions that rainfall shortage and drought is important problems.