Pomology
Vali Rabiei; Sogra Heydari; Asghar Soleimani; Fahime Nasr
Abstract
Introduction
The Persian walnut (Juglans regia L.) is a valuable commercial crop with high economic and nutritional value. Nutrition management is one of the most important factors affecting the growth and performance of modern walnut orchards. The demand for high-quality walnuts is increasing day by ...
Read More
Introduction
The Persian walnut (Juglans regia L.) is a valuable commercial crop with high economic and nutritional value. Nutrition management is one of the most important factors affecting the growth and performance of modern walnut orchards. The demand for high-quality walnuts is increasing day by day in the national and international markets. Horticultural production has undergone tremendous changes in recent years due to the development of innovative technologies, including nutrient management practices. Nutrient management of walnuts is one of the important factors for increasing yield and improving the quality of walnut kernels. The use of nitrogen, phosphorus and potassium fertilizers is essential for tree growth and the production of fruits such as walnuts. The enhancement in the use of fertilizers in an irrational manner has led to a decrease in soil productivity and multiple nutrient deficiencies. Minimizing the use of chemical fertilizers in fruit cultivation is the goal of integrated fruit production. The gravity of environmental degradation caused by the faulty cultivation practices has led to focus on ecologically sound, viable and sustainable farming systemsIn this study, in order to investigate the efficiency and feasibility of replacing sulfate-containing fertilizers with thiosulfate-based fertilizers, the effect of calcium thiosulfate and potassium thiosulfate fertilizers on increasing the yield and quality of walnut fruit was evaluated in an experiment.
Materials and Methods
This experiment was conducted in 1402, in a randomized complete block design with three replications and 5 trees per experimental unit in an orchard with 6-year-old Chandler trees grown from tissue culture seedlings in the Khoramdareh Agro-Industrial Complex. The experimental treatments included T1: regular orchard nutrition (control) including 50 kg/ha potassium nitrate calcium + 200 kg/ha potassium sulfate, T2: 100 L/ha calcium thiosulfate plus 200 kg/ha potassium sulfate, T3: 50 kg/ha potassium nitrate and calcium plus 100 L/ha potassium thiosulfate plus 125 kg potassium sulfate, T4: 100 L/ha calcium thiosulfate plus 100 L/ha potassium thiosulfate plus 125 kg potassium sulfate. After applying the treatments, after observing signs of ripening, the fruits of the tree were harvested and transferred to the laboratory for evaluation of biochemical and physical traits.
Results and Discussion
Analysis of variance for fruit and yield traits showed significant differences at the 1 and 5 % levels. Comparison of the means of these traits showed that the highest fruit dry weight, fresh and dry kernel weights, and kernel percentage were obtained in the calcium and potassium thiosulfate treatment, and the highest tree yield and yield efficiency per trunk cross-section were obtained in the calcium thiosulfate treatment. Calcium increases the growth of hairy roots, root cell division, root length and also enhance the absorption and transfer of nutrients and water to the plant, This led to an improvement in fresh and dry weight of the plant and yield. Calcium also increases the fresh and dry weight of the plant by increasing the transfer of carbohydrates from leaves to fruit. On the other side, potassium increases fresh and dry weight and yield by enhancing photosynthesis, carbohydrate formation and transport, maintaining intracellular pH, and absorbing nutrients from the soil. In addition, the results of the comparison of means showed that all treatments used increased the total phenol and flavonoid content of walnut fruit compared to the control, so that the highest total phenol and flavonoid content were obtained in the potassium thiosulfate and potassium and calcium thiosulfate treatments. Calcium reduces oxidative stress in the membrane through membrane strength and delays the degradation and reduction of phenolic compounds by strengthening the membrane and cell wall. Moreover, Potassium increases plant growth and photosynthetic activity, increasing the allocation of additional carbon to the shikimic acid pathway, thereby increasing phenolic substances such as phenols and total flavonoids. Potassium also increases phenolic compounds and antioxidants by increasing the activity of the enzyme phenylalanine ammonia lyase, which is a key enzyme in the synthesis of phenolic compounds. Analysis of variance of data related to crude fiber, total protein and crude fat of fruit showed significant difference between treatments at 1% level, but the effect of treatments on ash content of samples was not significant. Results of mean comparison showed that the highest amount of crude fiber was related to potassium and calcium thiosulfate treatment. Increased absorption and transport of nutrients is one of the important factors in increasing crude fiber in plants, and it seems that rapid absorption and transport of thiosulfate-containing compounds has led to improved fiber production. Analysis of variance of data related to linoleic and oleic acid traits of walnut fruit showed significant difference between treatments at 1% level and results of mean comparison also showed significant increase in linoleic acid content in fruits under calcium and potassium thiosulfate treatment and potassium thiosulfate treatment. There are two important sources for assimilation and oil formation. The first is the carbohydrate pathway that is produced in the leaf after photosynthesis and transferred to the fruit, and the second is the carbohydrate pathway that is formed during photosynthesis in the walnut fruit, which is converted into fatty acids after enzymatic processes. In this study, increasing sulfur, potassium, and calcium and increasing the absorption of trace elements due to thiosulfate consumption increased photosynthetic activity and increased the production of plant metabolites, which increased the fatty acids in walnuts. Therefore, the obtained results indicate high efficiency of calcium and potassium thiosulfate fertilizers in increasing quality and yield of walnut fruit.
Conclusions
Our findings indicated that calcium thiosulfate - potassium thiosulfate combination were the best treatments for increasing quantitative and qualitative characteristics of walnut fruit. These findings demonstrate the potential of calcium and potassium thiosulfate fertilizers to enhance walnut orchard productivity and fruit quality, making them a recommended choice for nutrient management strategies.
Keywords: Fatty acids, Nutrition, Biochemical traits of fruit, Yield efficiency
Medicinal Plants
R. Raei; V. Akbarpour; M. A. Bahmanyar
Abstract
Introduction Fertilizer management is one of the main factors in achieving sustainable agriculture. Therefore, the integrated agricultural system recommends the use of organic matter along with the optimal use of chemical fertilizers. This method is a balanced way to improve the physical and ...
Read More
Introduction Fertilizer management is one of the main factors in achieving sustainable agriculture. Therefore, the integrated agricultural system recommends the use of organic matter along with the optimal use of chemical fertilizers. This method is a balanced way to improve the physical and chemical properties of the soil, which leads to improved growth and increased plant yield. Organic fertilizers, especially livestock manures, have higher levels of organic matter than chemical fertilizers, and can be considered as sources of nutrients, especially nitrogen, phosphorus and potassium. One of these organic fertilizers is poultry manure, which in addition to having macro and micro elements (manganese, iron, copper, and boron) is one of the cheapest fertilizers compared to other fertilizers used. It is also richer in terms of nitrogen than other animal fertilizers. Soil fertility is the factor that change the amount of active substances and essential oils. Micronutrients such as zinc, although needed in small amounts by plants, play an important role in plant growth and development. The application of zinc sulfate fertilizer improved the quantitative and qualitative attributes of basil, peppermint, sage, and rosemary. Researchers stated that the application of a combination of chemical fertilizers and poultry manure has increased the yield of garlic essential oil. Therefore, in recent years, integrated plant nutrition management has been discussed. Integrated plant nutrition management is based on the simultaneous application of organic, chemical, and biological fertilizers. Because organic fertilizers alone can’t provide the needs of high-yielding plants. Combined application of organic, chemical, and biological fertilizers can improve the physical and chemical conditions of the soil and increase organic carbon and nutrients. Savory is an aromatic medicinal plant from the mint family. This plant has a lot of essential oils and is very important in the food, pharmaceutical, and health industries. The aim of this study was to investigate the role of poultry manure and zinc sulfate in the cultivation of savory.Materials and Methods The present experiment was performed as a factorial in a completely randomized design with 3 replications. The factors consisted of poultry manure with four levels (0, 3, 6, and 9 t.ha-1) and the second factor zinc sulfate with four levels (0, 50, 100 and 150 mg.kg-1 soil).Results and Discussion According to the obtained results, the effect of poultry manure, zinc sulfate, and their interaction on most of the studied traits was significant. The highest height was observed in the treatment of poultry manure of 9 t.ha-1 + zinc sulfate in 100 mg. kg-1 soil, which showed an increase of 79.26% compared to the control, and the lowest height belonged to the control treatment. The total chlorophyll in the chicken manure treatment of 6 t.ha-1 + zinc sulfate in 150 mg. kg-1 had a significant increase compared to the control. The highest amount of leaf nitrogen was obtained in the treatment of poultry manure of 9 t.ha-1 + 50 mg.kg-1 with an increase of 82.03% compared to the control. Zinc element was observed with a 222.75% increase in poultry manure treatment of 9 t.ha-1 + 150 mg.kg-1. Poultry manure treatment of 6 tons per hectare + 150 mg.kg-1 with 261.53% increase compared to the control contained the highest percentage of essential oil.Conclusion The results of the study showed that the use of combined ratios of poultry organic fertilizer and zinc sulfate has been effective in improving vegetative attributes, available plant elements, and essential oil content.
Growing vegetables
Mahboobeh Zamanipour
Abstract
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area ...
Read More
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area under tomato cultivation was 121203 hectares, with an average yield of 43.30 tons per hectare, and annual production of 5248904 tons. Vitamins are made from natural ingredients and are suitable for the growth, function and improvement of plant nutrition. The aim of this study was to investigate the effects of different levels of pyridoxine (50, 100 and 150 mgL-1), thiamine (50, 100 and 150 mgL-1) and folic acid (50, 100 and 150 mgL-1) and the combination of these vitamins on the plant growth, yield and chemical properties of tomatoes.
Materials and Methods: This study was conducted as randomized complete block design with three replications in the greenhouse of Iranshahr University during the years 2019 to 2020. The tomato cultivar was Delphus, the seedling of which was purchased from Pakan Bazr Isfahan Company. In August, with the beginning of the tomato planting period in the greenhouse, seedlings were planted and the harvest lasted until December. Seedlings were planted in rows of 75 cm wide and 40 cm apart. Irrigation was performed in the greenhouse with a drip system. The first irrigation was carried out immediately after planting and the second and third irrigations were carried out one day later for one hour and the subsequent irrigations were carried out in proportion to the growth of seedlings, every other day, every four days. At the 7-8 leaf stage, the plants were guided vertically on the thread. The greenhouse temperature was 25 to 32 °C during the experiment and 18 to 24 °C at night and the relative humidity was about 50%.
Results and Discussion: The results showed that all used concentrations of pyridoxine, thiamine and folic acid increased the growth parameters compared to the control, so that the highest plant height (271 cm), stem diameter (7 cm), number of leaves (31) fresh weight (502 g) and dry weight (341.66 g) were produced at a concentration of 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid. Interaction of B vitamin levels at low, medium and high levels had a significant effect on the reproductive parameters of tomato plants, so that the highest number of flowers (41.33), number of fruits (29.55), number of clusters (9.77), fruit diameter (22.44 mm), fruit fresh weight (158 g) and fruit dry weight (10.81 g) and yield (5688.9667 g/plant) at a concentration of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 was observed per liter of folic acid. Increasing of yield can be due to increased nutrient uptake and assimilation, and increased growth due to the presence of vitamins. Similar results by El-Gharmany et al. (2005) stated that foliar application of vitamins (B1, B6 and B12) in appropriate concentrations in cowpea significantly increased the number of pods per plant and total yield compared to the control. Shabaly and El-Ramady (2014) and Shabana et al. (2015) found that some natural ingredients have increased yield of garlic and tomatoes. Also, all concentrations of pyridoxine, thiamine and folic acid used increased biochemical parameters compared to the control. Maximum pH (4.78), acidity (0.28%), soluble solids (3.93%), lycopene (2.64 mg/100 g fresh weight), total phenol content (66.66 mg/100 g fresh weight, vitamin C (13.36 mg/100 g fresh weight), chlorophyll a (1.98 mg/g fresh weight), chlorophyll b (0.98 mg /g fresh weight) and carotenoids (3.33 mg/g fresh weight) were obtained by using a combination of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 folic acid. Foliar application of vitamin treatments may play an important role in physiological and metabolic processes that affect the process of photosynthetic metabolism and lead to an increase in soluble solids and minerals. The interaction of vitamins improves the action of biochemicals on amino acid metabolism and nucleic acid synthesis. However, Abdel-Halim (1995) reported that foliar application of some vitamins improved leaf growth, increased chlorophyll, chemicals, and internal hormones in tomatoes during the winter. El-Ghamriny (2005) reported that foliar application of B vitamins (B1, B6 and B12) increased leaf chlorophyll in cowpea compared to the control, and Burguieres et al. (2007) found that folic acid at a concentration of 50 mgL-1 increased minerals in peas. Hendawy and Ezz El-Dinn (2010) reported that vitamin B complex as a coenzyme in enzymatic reactions such as carbohydrates, fatty acids and proteins involved in photosynthesis and respiration. In addition, Abd El-Hakim (2006) reported that some antioxidants improve biochemical properties in some beans.
Conclusion: The results showed that the use of pyridoxine, thiamine and folic acid vitamins alone or in combination with each other improved the growth, reproductive and biochemical characteristics of Delphi greenhouse tomatoes. The highest growth rate, yield and biochemical properties were obtained at 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid.
Hamid Reza Zabihi; Saeid Rezaeian
Abstract
Introduction: Pomegranate is one of the most important horticultural products cultivated in tropical and subtropical regions of Iran. It plays a major role in the economic situation of the peoples of these areas. In recent years, due to the good quality of Iranian pomegranate, this product is considered ...
Read More
Introduction: Pomegranate is one of the most important horticultural products cultivated in tropical and subtropical regions of Iran. It plays a major role in the economic situation of the peoples of these areas. In recent years, due to the good quality of Iranian pomegranate, this product is considered to be of great interest to many different countries of the world. There are about 2,100 hectares of pomegranate in the Ferdows region, which is the dominant and major part of Ferdows pomegranate, and is called Shish Kap variety. Zinc and iron are two of the essential elements for the growth of all plants and over a century, the necessity of iron and zinc for plant nutrition have been identified. White seed disorders were reported in Ferdows region in 2001 for the first time. The results of pomegranate juice analysis of ferdows pomegranate samples showed the iron and zinc deficiency, compared to the normal pomegranate in that year. Based on this, considering the general condition of soils in the proposed area, the effect of iron and zinc on the removal of seed whitening of pomegranate was investigated.
Materials and Methods: In order to investigate the effect of spraying different concentrations of iron and zinc sulfate on the reduction of seed whitening, a factorial experiment based on a randomized complete block design with three replications was conducted in the pomegranate field of Ferdows region. The first factor included: spraying three concentrations of iron sulfate (0, 0.3 and 0. 6 %) and the second factor included the concentration of zinc sulfate (0, 0.3 and 0. 6 %). The distance gap between the trees was (2.5 * 3) meters and the garden age was about 12 years old. The soil and water were sampled from the garden. Each experimental plot was consisted of three trees, in which leaves and fruits were sampled for analysis from the middle tree. Samples were taken from the leaves before spraying. Spraying with the desired concentrations was carried out twice. Leaf and fruit samples were sent to the soil and water Laboratory. Each of the samples due to the peculiar color of the pomegranate juice was also sent to the laboratory for analysis. Pomegranate juice samples were then assigned to the quality control system of the seed and seedlings research department. Finally the brix and pH of the samples were determined.
Results and Discussion: The amount of nutrients in soil, and the mount of zinc and iron in the leaves were below the critical value. The deficiency of other elements in the soil and leaves were quite evident. The results showed that the concentration of iron and zinc elements increased significantly in pomegranate leaves (α = 1% level). Qinglong and Brown (1995) showed the same results. Spraying of Fe and Zn increased the concentration of these elements in the leaves, without any negative effects on the tree yield. The mean concentration of zinc and iron were lower in control treatments, which was more common in white seeds. The interaction effect of iron and zinc treatments on iron concentration in pomegranate leaves was significant (α = 1% level), and the highest iron concentration in leaf was obtained from zinc and iron sulfate solutions at the concentration level of 6,000.Pomegranate samples were analyzed in soil and water laboratory, and nutrient concentrations of the pomegranate juice were determined. The results showed that the pure effect of iron sulfate spraying on the concentration of pomegranate juice was not significant, but the pure effect of zinc sulfate solution increased zinc concentration of the pomegranate juice. The pure effect of zinc sulfate treatment, and the interaction effect of iron and zinc sulfate spraying treatments on pH of pomegranate juice were significant (α = 5% level). The pomegranate juice quality was evaluated in terms of color in a panel method. The results showed that all treatments increased the redness of pomegranate juice color. The best treatment in this study, was spraying at 0.6% zinc sulfate alone.
Conclusion: By spraying 0.6% zinc and iron sulfates, spray treatments increased the concentrations of iron and zinc in the leaves. However, due to the specific behavior of iron in the plant, the high pH of irrigation water and soil and the presence of carbonate and bicarbonate in irrigation water, the effect of iron absorbed in the leaves were not evident in the fruit. Spraying with iron and zinc sulfate improved pomegranate seed color. According to the results of the project implementation, and due to the high soil pH and organic matter deficiency, spraying with 0.6% zinc and iron sulfates is recommended.
Hamed Doulati Baneh; Marzieh Mohammadzade; Farokh Ghani Shayeste
Abstract
IntroductionLate-season Bunch Stem Necrosis (BSN) is observed as a necrosis of the cluster stem (rachis) that leads to shriveling of berries on the affected portion of the cluster. The BSN symptoms include dark, necrotic lesions on the rachis or individual pedicels that may spread and eventually girdle ...
Read More
IntroductionLate-season Bunch Stem Necrosis (BSN) is observed as a necrosis of the cluster stem (rachis) that leads to shriveling of berries on the affected portion of the cluster. The BSN symptoms include dark, necrotic lesions on the rachis or individual pedicels that may spread and eventually girdle the affected part of the cluster rachis. Berries distal to a lesion cease normal development, and the unripe berries either abscise or remain on the cluster in a withered condition. Frequently only the cluster tip or a shoulder is affected, while the rest of the cluster develops normally. Symptomatic and non-symptomatic clusters may be borne on the same vine. BSN has been correlated with numerous factors; however, no universal cause and effect relationships have been demonstrated. No pathogens are believed to cause this condition. Instead, certain weather conditions and vine nutrition seem to be associated with its occurrence. Low temperatures and high humidity around bloom or excessive rainfall after veraison may be related to its development. Imbalances between calcium and potassium as well as low levels of nitrogen in vines are other possible causes. Unaffected portions of clusters develop normal fruit quality.ʽBidaneSefidʼ or ʽKeshmeshiʼ is an important grape cultivar in Iran and is frequently affected by bunch stem necrosis disorder around country. The purpose of this study was to determine if mineral nutrition was associated with BSN of ʽBidaneSefidʼ grape cultivar under Urmia growing conditions.
Materials and MethodsTo evaluate the effects of foliar sprays of Ca, Mg and GA3 on reduction of BSN incidence on ʽBidaneSefidʼ cultivar, and to examine the relationships between specific nutrients and the incidence of BSN this field experiment was performed based on randomized complete blocks design with eight treatments and three replicates on 2011in a vineyard around Urmia city. Vines were 8-year-old and were trained as bi lateral cordon. At the end of full bloom and a week after that the vines were sprayed two and five times with 2% MgSO4 and CaCl2 fertilizers alone and combined. GA3 also was sprayed at 70% of flowering with 20 ppm and replicated at fruit set with 40 ppm. Symptoms rate of BSN on bunches and minerals nutrient content(N, K, Ca, Mg and Ca+Mg/K) of leaves and rachis were measuredin veraison phenological stage.
Results and DiscussionResults showed that in veraison stage the most and the least BSN incidence rate was recorded in control and the vines that were sprayed two times with 2% MgSO4, respectively. Leaf Ca content in vines treated two times with 2% CaCl2 and those sprayed five times with MgSO4+CaCl2 was more than other treatments. Maximum amount of Mg was recorded in leaves of vines sprayed by 2% MgSO4, 5 times during growing season. These vines showed the least BSN rate, too. The most contentof K/Ca+Mg were in the leaves of control and GA3 treated vines and the least contentof those was in vines treated five times with MgSO4+CaCl2. Rachis tissue analysis for nutrient elements in veraisonstage did not consistently reveal any relationship between N, K, Mg, Ca and Mg+Ca/k and bunch stem necrosis in bunches of studied vines of ʽBidaneSefidʼ cultivar in Urmia region. There are conflicting reports regarding the association of essential nutrients and the incidence of BSN. A high ratio of potassium to magnesium and/or calcium in affected tissues, and also the application of calcium and/or magnesium fertilizers effectively reduced the incidence of BSN in Europe. In California, BSN was not reduced by applications of calcium and magnesium. An increase in the incidence of BSN was reported with application of nitrogen fertilizers. Magnesium and calcium appeared to be involved in the disorder. The results illustrate that BSN-prone vineyards should be individually examined for nutrient imbalance or other stresses that may be contributing to BSN.
ConclusionsResults of this study suggest thecontrol of BSN incidence by fertilizer treatments. Foliar applications ofMg and Ca fertilizers appeared to have effect on BSN control and two times foliar applications of magnesium starting just before veraison minimize the problem. No apparent relationship was found between the petiole and/or rachis K/(Mg + Ca) ratio and BSN incidence. External application of GA3 reduced the BSN incidence in comparison to control.
Elyas Aryakia; Hamid Reza Roosta; Nahid Rahmizade
Abstract
Introduction: Date palm (Phoenix dactylifera L.) is one of the most important fruit species grown in Iran. This plant is mainly grown in the south of the country, where pH of soil is high, resulting in poor nutrient uptake. Furthermore, because of high yield and annual pruning of date palm, large amounts ...
Read More
Introduction: Date palm (Phoenix dactylifera L.) is one of the most important fruit species grown in Iran. This plant is mainly grown in the south of the country, where pH of soil is high, resulting in poor nutrient uptake. Furthermore, because of high yield and annual pruning of date palm, large amounts of macro and micronutrients are removed from soil. So, annual fertilizing should be applied for good performance. Research shows that use of manure alone or in combination with mineral fertilizers improves physico-chemical indices of fruits and leaves of palm trees. Regarding to high nutrition dependency of date palm, it is necessary to evaluate the effect of different fertilizers on physico-chemical indices of its leaf and fruit. The main objectives of this study were thus to evaluate the effect of cow manure, ammonium sulfate and potassium sulfate on physico-chemical indices in fruit and leaf of Mazafati date.
Materials and Methods: This study was conducted in bam zone, Kerman, Iran, in 2011- 2012. The area was located at 28°53′40′′N latitude, 58°37′18′′E longitude and 1050 m above sea level. A factorial experiment in a randomized complete block design was performed during month of March. Factors included ammonium sulfate (0, 500 and 1000 g/tree), potassium sulfate (0, 750 and 1500 g/tree) accompanied by cow manure (5 kg/tree). For leaf and fruit analysis, sampling was performed during month of June. Physico-chemical indices including nitrogen, potassium, iron, chlorophyll a, b and total, carotenoid, fruit weight, fruit diameter, fruit length, TSS and TSS/TA were evaluated. Chlorophyll was measured by using the method of Lichtenthaler (1987). Total soluble solid (TSS) was measured by using refractometer. Statistical analysis was performed using SPSS software and the treatment means were separated by Duncan’s multiple range tests.
Results and Discussion: Results showed that because of supplying nitrogen, sulfur and potassium and their significant effects on noted physico-chemical indices, the highest nitrogen and iron content, photosynthetic pigments of carotenoid and chlorophyll (a and total) of leaf, and fruit weight were obtained in treatments of ammonium sulfate (1000 g/tree) and potassium sulfate (1500 g/tree) combination with cow manure (5 kg/tree). The highest potassium content of leaf, TSS and TSS/TA ratio of fruit were obtained by using ammonium sulfate (500 g/tree) and potassium sulfate (1500 g/tree) in combination with cow manure. The general increase in physico-chemical indices of fruits and leaves of date palm by the application of cow manure plus mineral fertilizer might be due to the increase in the availability of nutrients especially available N, P and K in the soil. In many reports, the effects of mineral fertilizers on nitrogen, potassium and iron content of the plant tissues were discussed. For example, date palm (two cultivars including Zaghloul and Samany) treated by ammonium nitrate and nitrobean (a bio-fertilizer) had the highest amount of leaf nitrogen and potassium. The highest rates of nitrogen, iron and potassium in palm fruit were obtained from cow manure in combination with NPK. Nitrogen, iron and potassium contents of the date and pistachio were increased by using ammonium sulfate fertilizer. Fruit weight, length, diameter and dry weight increased, while fruit moisture content decreased by organic manures either alone or in combination with mineral NPK as compared to the mineral N. Higher fruit TSS was obtained by the application of organic manures alone or in combination with mineral NPK as compared with mineral fertilization alone. Nitrogen concentration can be increased by using nitrogen fertilizer, for example ammonium increased leaf nitrogen concentration more than nitrate. Mineral nutrient, especially sulfur and nitrogen supplied by ammonium sulphate and potassium sulphate, increased the content of chlorophyll and carotenoid due to their roles in the synthesis of these compounds. Higher potassium content of leaves promotes photosynthetic rate of chloroplast, phloem transport of photosynthates to sink tissues and finally improves quality and yield of the fruit, which is associated with high sugar content.
Conclusions: For feeding of date palm tree, cow manure fertilization alone is insufficient. Ammonium sulfate and potassium sulfate alone or in combination with cow manure could improve physico-chemical indices of leaves and fruits. This mixed fertilizer, supplying nitrogen, potassium and sulfur macronutrients, had significant effect on physico-chemical parameters, and subsequently improved the content of nitrogen, iron, potassium, photosynthetic pigments (a, b and total, carotenoid), TSS, TSS/TA ratio and the fruit weight.
Mahjabin Adel; Mohammad Esmaeil Amiri; Mohammad Ali Nejatian; Maryam Adel
Abstract
Introduction: Distribution of photosynthetic substances between vegetative and reproductive parts is influenced by the environmental factors as well as plant nutrition status. Therefore, application of nutrient substances (such as chelated magnesium sulfate and salicylic acid combination) can influence ...
Read More
Introduction: Distribution of photosynthetic substances between vegetative and reproductive parts is influenced by the environmental factors as well as plant nutrition status. Therefore, application of nutrient substances (such as chelated magnesium sulfate and salicylic acid combination) can influence the distribution of photosynthetic substances which in turn result in changes in allocation of photo-assimilates between vegetative and reproductive parts. Since the investigation of partitioning of photo- assimilates is complex and the interpretation of treatments effects on partitioning of substances is difficult in garden plants, this examination has been focused on external application of nutritional treatments on different organs growth by comparing the effects of salicylic acid and chelated magnesium sulfate on the allocation of photo- assimilates.
Materials and Methods: This experiment was performed in a commercial 10-year old orchard of Qazvin in 2013. Initially, 60 uniform pears (cv. Louise Bonne) which were infected to fire blight disease were selected. Before treatment imposing, agronomic practices such as removing and pruning infected shoots were applied. Treatments were combination of salicylic acid and chelated magnesium sulfate at different levels, which were applied on foliage under the conditions of neutral pollution to fire blight. In the present research, vegetative parameters (current shoot growth, leaf weight, leaf area, relative water content and so on) and reproductive parameters (length: diameter ratio and density of fruit and so on) were measured.
The fully expanded leaves were collected randomly from each replicate. After washing the samples were weighed and these values referred to as initial readings (fresh weight). Then, the leaf samples were placed in distilled water for 24 h in the dark at room temperature. The turgid leaves were blotted dry and weighed (saturation weight). After weighing, the material was oven-dried at 70 °C for 24 h. Relative water content (RWC) of the leaves was appraised as described by Ritchie and Nguyen (19) using the following formula:
RWC (%) = [(f. wt. – d. wt.) / (t. wt. – d. wt.)] × 100
Where f. wt, d. wt and t. wt are fresh weight, dry weight and turgid weight, respectively.
Diameter and length of fruit were measured by nondestructive method (on the tree) and by using digital caliper in the places of maximum length and maximum width diameters, and length: diameter ratio from the division of these two parameters. Fruit weight was estimated by digital scale (0.01 g) and its volume by the difference of the water level of scaled column, and then fruit density was calculated by using formula d=M/V.
In order to estimate the parameters of leaf area, specific leaf area and specific leaf weight, leaf area meter and oven were used. To evaluate the effect of the treatments on decrease or increase current shoot growth, measuring shoot length was reported by tape measure according to centimeter.
Results and Discussion: The results indicated that the most amount of specific leaf weight was allocated in chelated magnesium sulfate (0.5 and 0.7 g: 1000 ml) treatments and the least amount was belonged to the control group. The extent of changes in leaf area was between 28.17 to 44.33 cm2, were recorded to control group (without water) and salicylic acid (0.1 g: 1000 ml) plus chelated magnesium sulfate (0.7 g: 1000 ml), respectively. The minimum and maximum of specific leaf area were ranged between 44.14 to 59.40 cm2 and belonged to control group (without water) and salicylic acid (0.1 g: 1000 ml), respectively. The most current shoot growth was observed in control group (without water) and the least quantity was in chelated magnesium sulfate (0.5 g: 1000 ml). The minimum and maximum of fresh weight of leaf was changeable between 1.513 to 1.94 g were recorded to control group and salicylic acid (0.1 g: 1000 ml) plus chelated magnesium sulfate (0.7 g: 1000 ml), respectively. The most and the least content of leaf relative water were observed to salicylic acid (0.5 g: 1000 ml) plus chelated magnesium sulfate (0.5 g: 1000 ml) and salicylic acid (0.5 g: 1000 ml) plus chelated magnesium sulfate (0.7 g: 1000 ml), respectively. The extent of changes in fruit specific gravity was changeable between 0.72 to 0.97 g to cm3. The maximum amount of fruit specific gravity was seen in salicylic acid (0.5 g: 1000 ml) plus chelated magnesium sulfate (0.7 g: 1000 ml) and the minimum amount was in salicylic acid (0.5 g: 1000 ml) treatment. The conformity of the maximum current shoot growth and leaf fresh weight with the minimum leaf dry weight, leaf area, specific leaf area and specific leaf weight to control group and control group (without water) can declare the effect of treatment substances on the allocating manner of substances in different organs in plants and its stimulating effect on vegetative indexes that is not observable in the lack of treatment substances. The allocation of the most fruit specific gravity and also the least leaf relative water content and the least fruit length: diameter ratio to salicylic acid (0.5 g: 1000 ml) and chelated magnesium sulfate (0.7 g: 1000 ml) can confirm the opposit relation among these parameters in the way of substances allocation and the effect of above treatment on this opposit relation. Denser fruits have fewer growth rather than types with the more blank space and receive a more carbohydrate from the tree rather than their weight. The decrease of relative water content of leaf can also be explained in the direction of the more absorption of carbohydrate by fruit as a strong sink. In other words, the existence of fruit as a strong sink in favorable conditions for photosynthesis (with paying attention to the high vegetative indexes) can prevent gathering water in chloroplast and cause an increase of fruit specific gravity.
Also, the allocation of the most specific leaf weight and the least fruit length: diameter ratio and the least current shoot growth to chelated magnesium sulfate (0.5 g: 1000 ml) express the positive role of sulfur in aforesaid concentration on stimulating leaf growth and its negative role in stimulating growth of shoot and fruit that somehow points on the effect of treatment substances on the allocation of substances (elaborate sap) to different organs. The sulfur compounds can cause preventing gibberellin synthesis and the decrease of internode length, like other growth retardants.
The maximum fruit length: diameter ratio was belonged to salicylic acid (0.1 g: 1000 ml) and chelated magnesium sulfate (0.7 g: 1000 ml). Salicylic acid (0.1 g: 1000 ml) treatment induced maximum amounts of fruit length and diameter to itself that confirms the positive role of salicylic acid in stimulating growth in stress conditions (biotic stress derived from Erwinia amylovora). The significant negative correlation (p
Mahjabin Adel; Mohammad Esmaeil Amiri; Mohammad Ali Nejatian
Abstract
Introduction: Fruit quality is described based on the crop functions (for industry or table) and/or difference of the consumer tastes in different societies. The conformity of the quality with consumer demands has an effective role in improvement of the marketing process. For example, elongated pears ...
Read More
Introduction: Fruit quality is described based on the crop functions (for industry or table) and/or difference of the consumer tastes in different societies. The conformity of the quality with consumer demands has an effective role in improvement of the marketing process. For example, elongated pears are preferred for the processing industries and conserving productions. The lack of attention to retaining of quality and/or improvement of apparent situation of gardening product in proportion to consumer demands decreases especial consumer acceptance. The necessity of having desired quality characteristics in pear fruits from the characters viewpoint of fruit specific gravity (major rating criterion of pears) and proportion of length to diameter (minor rating), because of their role in market acceptance and pricing, is evident. Fruit quality, while harvesting, as one of the components of plants fertility influenced under different parameters like nourishment and could be managed during growth season. In other words, the gain of qualities proportionated to consumers demands and/or processing industries is possible by the use of acquired method such as the kind of mother plant nutrition, and control of pests and diseases, etc. In the current research, the effect of salicylic acid and chelated magnesium sulfate was studied on physical indexes of fruits quality of pear fruit.
Materials and Methods: In order to study the effect of treatment agents, an experiment was conducted in the ecological conditions of Qazvinon Pear trees belonging to Louise Bonne cultivar in the Randomized Complete Block Design. The treatments includecontrol group (with andwithout water),chelated magnesium sulfate with concentration of 0.5 gram in a liter, chelated magnesium sulfate with concentration of 0.7gram in a liter, salicylic acid with concentration of0.1 gram in a liter,the compound treatment of salicylic acid with concentration of 0.1 andchelated magnesium sulfate with concentration of 0.5 gram in a liter, the compound treatment of salicylic acid with concentration of 0.1andchelated magnesium sulfate with concentration of 0.7gram in a liter, salicylic acid with concentration of 0.5gram in a liter,the compound treatment of salicylic acid with concentration of 0.5andchelatedmagnesium sulfate with concentration of 0.5 gram in a liter, and the compound treatment of salicylic acid withconcentration of 0.5andchelated magnesium sulfate with concentration of 0.7gram in a liter. Measuring the attributes of fruit weight, fruitvolume, fruit specific gravity(W/V), fruit length, fruit diameter and fruit shape index (L/D) were made in two successive years (2012, 2013).Diameter andlength of fruit earned by nondestructive method and by using digital caliper (Mitutoyo) in the place of maximum length and width diameters andlength: diameter ratio by division of these two parameters. Fruit weight estimated by digital scale (0.01 g) and its volume by the difference of the water level of scaled column and fruit density was calculated by using formula d=M/V. The statistic calculations of measured characteristics were made using MSTATC and SPSS soft wares and the comparison of means using Duncan's test.
Results and discussion: The results indicated that the plants nourishment using organic and mineral combinations had an influence on quality characteristics and there was a significant difference among combinations in most cases (p< 0.01). In the way that the extent of changes among different treatments was changeable in the case of fruit length between 64.67 to 76.82 mm, fruit diameter between 45.01 to 57.81 mm, proportion oflength to diameter between 1.28 to 1.59 mm, fruitvolume between 54.67 to 128.7cm3, fruit weight between 67.39 to 121.7 g and fruit specific gravity between 0.72 to 0.97 g to cm3. Maximum weight, volume and specific gravity in fruits were allocated to the treatment of salicylic acid with concentration of 0.1gram in a liter, the compound treatment of salicylic acid with concentration of 0.1 and chelated magnesium sulfate with concentration of 0.5gram in a liter, and the compound treatment of salicylic acid with concentration of 0.5and chelated magnesium sulfate with concentration of 0.7 gram in a liter, respectively and the least amount in each of the three cases was related to the treatment of salicylic acid with concentration of 0.5 gram in a liter, too. The most and the least amount oflength: diameter ratio were allocated to the treatment of salicylic acid with concentration of 0.5 gram in a liter and the compound treatment of salicylic acid with concentration of 0.1 and chelated magnesium sulfate with concentration of 0.5gram in a liter, respectively. The increase of crop quality by salicylic acid in plants under tension conforms to the other study results. Salicylic acid has an important role in regulating various physiological processes such as growth, plant development, ion absorption and photosynthesis. Therefore, the application of salicylic acid as a plant growth regulator besides the mineral compound of chelated magnesium sulfate is effective on physical indexes of fruit quality in Pear.
Conclusions: The results indicated that the fruits treated with salicylicacid with concentration of 0.5 gram in a liter had more proportion of length to diameter and less specific gravityrelated to others and the aforesaid treatment can be paid attention as proposed nutrition to produce lighter and more extended pear fruits, depending on the purpose.Furthermore, the compound treatment of salicylic acid with concentration of 0.5 and chelated magnesium sulfate with concentration of 0.7 gram in a litercan be paid attention as proposed nutrition to produce heavier pear fruits, too and that is because of its allocation of the most amount of fruit specific gravity.