Medicinal Plants
Mansoureh Fadaei; Vahid Akbarpour; Seyyed Javad Mousavizadeh; Kamran Ghasemi
Abstract
Introduction
Pumpkin (Cucurbita pepo) is a medicinal plant belonging to the Cucurbitaceae family and the order Cucurbitals. The seeds of this plant are a rich source of essential oils and proteins for the body. It is used in the production of various drugs such as Peponen, Pepostrin, Grunfig and treatment ...
Read More
Introduction
Pumpkin (Cucurbita pepo) is a medicinal plant belonging to the Cucurbitaceae family and the order Cucurbitals. The seeds of this plant are a rich source of essential oils and proteins for the body. It is used in the production of various drugs such as Peponen, Pepostrin, Grunfig and treatment of prostate swelling, urinary tract inflammation, atherosclerosis, gastrointestinal regulation, etc. Since the components of medicinal plants are low at natural condition, and could be increased by means of different environmental conditions, nutrition or application of elicitors; thus, it is necessary to work on mentioned parameters effects on quantitative and qualitative attributes of medicinal plants. Recent years, many researches have been done based on natural components for increment of yield and secondary metabolites of medicinal plants. Ascorbic acid is one of these materials which its effect on plant growth has been validated. In the management of agricultural inputs, especially in the cultivation of medicinal plants, the application of substances that have the least harmful side effects on human health and the environment is recommended. Meanwhile, sucrose and ascorbic acid are healthy substances to improve growth and increase crop yield. Therefore, the aim of the present study was to determine the effect of these two substances on yield, yield components and phytochemical characteristics of pumpkins.
Materials and Methods
Pumpkin seeds were prepared from Pakan Bazr Esfahan by purity of 99%. Then, planted in a farm of 500 m2 at Behshar. After plant growth, spray treatments were conducted at three times as before flowering, onset of flowering and fruit set stages. This experiment was conducted in factorial with sucrose factor at four levels (0, 5, 10, 15 g.l-1) and ascorbic acid factor at four levels (0, 15, 30, 45 mM), based on a randomized complete block design with three replications. The studied characteristics included number of leaves and fruits, plant yield, 1000-seed weight, total number of seeds, number of healthy seeds, percentage of healthy seeds, number of blank (deaf) seeds, percentage of blank seeds, total chlorophyll, antioxidant activity, phenol, flavonoids, protein and oil percentage. Statistical analysis of data was performed using SAS statistical software and comparison of mean was performed using the least significant difference (LSD) at the level of 5% probability. Figures were graphed with Excel software.
Results and Discussion
According to this study results, the effect of foliar application of sucrose and ascorbic acid and their interaction on most of the studied traits was significant. Application of 15 g.l-1 sucrose with 15 mM ascorbic acid increased the number of fruits to 1.68 per plant, which showed an increase compared to the control treatment. The highest total number of seeds with an average of 464 seeds per fruit was obtained by applying 5 g.l-1 sucrose with 45 mM ascorbic acid, which compared to the control (247.33) recorded an increase of 87.60%. The highest total chlorophyll content was measured with an average of 2.081 (mg.g-1 fresh weight) using 5 g.l-1 sucrose with 15 mM ascorbic acid, which showed an increase of 1.81% compared to the control treatment (2.044). Also, application of 15 g.l-1 sucrose along with 15 mM ascorbic acid increased protein by 40.03%, which showed an increase of 79.26% compared to the control (22.33). Other results indicate that increasing the amount of seed oil up to 44.50% is available with the application of 15 g.l-1 sucrose with 30 mM ascorbic acid and also with the application of 10 g.l-1 sucrose with 45 mM ascorbic acid; which had an increase of 16.61% compared to the control (38.16). The results of the present study showed that the application of combined ratios of sucrose and ascorbic acid has been effective in improving the quantitative and qualitative attributes of pumpkin, including protein content and percentage of pumpkin seed oil.
Conclusion
Since the treatment of sucrose 10 g.l-1 with 45 mM ascorbic acid significantly affected most of important attributes such as total antioxidant activity, total flavonoids, protein content and high oil content, therefore, this combination of treatment can be applied to increase the quality of pumpkin seeds. However, if only quantity is important, the treatment of sucrose 15 g.l-1 with 15 mM ascorbic acid, which caused the highest number of fruits per plant, the highest yield as well as the highest protein, can be recommended.
Majid Azizi; Hoda Ahmadi; Hossein Arouiee
Abstract
Introduction: Evening primrose (Oenothera biennis L.) is a relatively new oilseed crops with high value which its oil is the most important source of gamma linolenic acid. In this study, seed of Evening primrose was stored in different temperature and packaging materials to improve the content and quality ...
Read More
Introduction: Evening primrose (Oenothera biennis L.) is a relatively new oilseed crops with high value which its oil is the most important source of gamma linolenic acid. In this study, seed of Evening primrose was stored in different temperature and packaging materials to improve the content and quality of its oil.
Materials and Methods: In order to study the effect of packaging, storage temperature and storage period on Evening primrose seed oil properties, a split-plot in time experiment was conducted on the basis of completely randomized design at 32 treatments and three replications. Treatments included four levels of storage period (3, 6, 9 and 12 months) as main plot, four levels of packaging (Paper with 0.15 mm, Aluminum with 0.12 mm, PolyVinylChloride (PVC) with 0.09 mm and Cellophane with 0.07 mm thickness) and two levels of temperature (4 °C and Ambient temperature (20 °C)) as sub plots. Seed packages of 100 grams stored in plant physiology laboratory of horticulture department of Ferdowsi university of Mashhad from May 2014 to May 2015. After each period of storage seed oil (extracted by soxhelet) acid and peroxide value were examined as oil quality index. The statistical analysis was performed using the JMP software version 8 and data means were compared using LSD test’s in 5% level of probability. Acid and peroxide value were measured according to standards of EEC REG 2568/91 and AOCS cd 8-53, respectively.
Results and Discussion: Based on the results, the simple effect of temperature, packaging material and storage time was significant on all the properties of evening primrose oil. Before storage, seed oil content was 16.45% (w/w) but after three months of storage the oil content increased to 19.75% w/w. From third month of storage until 9th a sharp decline was observed, and the oil content was 12.71 % w/w at the end of 9th months. Finally the seed oil content slightly increased until 12thmonth. Before storage, acid and peroxide value were reported 1.16 (mg KOH/g oil) and 2.4 (meq O2/Kg oil), respectively. During storage, acid value showed descending trend so that at the end of 6 and 12 months storage obtained 1.08 and 0.96 mg KOH/g oil, respectively. Oil peroxide value after third months reached to 3.14 (meq O2/Kg oil) and its maximum (9.82 meq O2/Kg oil) was detected at the end of storage period. Ambient temperature in terms of oil content and 4 °C in terms of oil quality were optimum condition for Oenothera seed storage. Seeds samples which packed in paper and cellophane material showed the most oil content (17.29% and 16.75%, respectively). Cellophane packaging in terms of acid (0.89 mgKOH/g oil) and peroxide value (5.05 meq O2/Kg oil) was diagnosed the best packaging material to preserve the quality of the oil during storage. Interaction between storage temperature and storage period on oil percentage was significant at 1%. The highest oil percentage (59/22%) was detected after three months of storage at ambient temperature. Interaction between packaging and storage temperature on acid value of evening primrose seed oil was significant at 1% as aluminum packaging at ambient temperature and paper packaging in both temperatures had the highest acid value (1.15 and 1.11mg KOH/g oil, respectively). The lowest acid value (0.82 mg KOH/g oil) was detected in cellophane packaged seeds at 4°C temperature. Interaction between packaging material and storage period on acid value of evening primrose seed oil was significant at 1%. The highest acid value (1.24 mg KOH/g oil) obtained after six months in paper packaged seeds and seeds samples which packed in cellophane material had the lowest acid value (0.72 mg KOH/g oil) after nine months of storage. Interaction between storage temperature and storage period on acid value of evening primrose oil was significant at 1%. The highest acid value (1.11mgKOH/g oil) was detected after 12 months of storage at ambient temperature. At the end of 12th months at 4 °C temperature, the lowest acid value (0.81mg KOH/g oil) was reported. Interaction between packaging material, storage temperature and storage period on acid value of evening primrose seed oil was significant at 1% as paper packaged seeds after six months of storage at 4°C temperature and cellophane packaged seeds after 12 months of storage at ambient temperature showed the highest acid value (1.34 mg KOH/g oil). The end of 9th months in cellophane packaged seeds at both temperature, the lowest acid value (0.72 mg KOH/g oil) obtained. Interaction between packaging material and storage period on peroxide value of evening primrose oil was significant at 1% as paper packaged seeds after 12 months of storage had the highest peroxide value (11meq O2/Kg oil). Seeds samples which packed in PVC and cellophane material after three months showed the lowest peroxide value (2.15 and 1.85 meq O2/Kg oil, respectively). Interaction between storage temperature and storage period on peroxide value of evening primrose oil was significant at 1%. The highest peroxide value (10.01meq O2/Kg oil) was detected after 12 months of storage at ambient temperature. After three months of storage at 4°C temperature the lowest peroxide value (2.65 meq O2/Kg oil) obtained. Interaction between packaging material, storage temperature and storage period on peroxide value of evening primrose seed oil was significant at 1% as paper packaged seeds after 12 months of storage at 4°C temperature had the highest peroxide value (12 meq O2/Kg oil). The lowest peroxide value (1.60 meq O2/Kg oil) was detected in cellophane packaged seeds after three months of storage at 4 °C temperature.
Conclusion: Overall, evening primrose seed storage in paper and cellophane packaging during three months at ambient temperature to improve the content of oil was desirable. Seed storage in paper packaging at ambient temperature after12 months, reduced oil quality. Seeds samples which packed in PVC and cellophane material at 4°C temperature preserved the quality of evening primrose oil.
Rahmatollah Gholami; Isa Arji
Abstract
Introduction: Olive (Olea europaea L.) is an ever-green and drought-tolerant tree grown on regions with limited water resources to produce oil and table products. Due to existing appropriate environmental conditions in our country for its growing, and also considering public desperate needs to ...
Read More
Introduction: Olive (Olea europaea L.) is an ever-green and drought-tolerant tree grown on regions with limited water resources to produce oil and table products. Due to existing appropriate environmental conditions in our country for its growing, and also considering public desperate needs to its oil product, olive is economically considered to be an important fruits to be cultivated. The problem of supplying sufficient water for irrigation olive orchards, due to serious threats of ongoing drought and reduction in water resources, is one of the main limiting factors on the way to develop olive industry in country. Accordingly, some suitable approaches like using tolerant cultivars, mulches, reduction of plant transpiration, plant growth regulators, and recently evaluating proper time for irrigation have been examined to increase efficiency of water use. According to this approach, irrigation schedule is designed mainly based on maintaining plant’s water status internally and regarding maximum level of water potential at particular stages of plant cycling, especially at time of lowest sensitivity of fruit growth to drought stress.
So far, many studies performed over effects of drought stress and water deficit on vegetable growth of olive under pot conditions. With respect to establishing olive orchards on different regions of country and appearing serious drought threats, it is imperative to investigate the effects of regulated irrigation deficit on all bearing fruit trees. Hence, determining the insensitive stages of fruit growth toward regulated irrigation deficit has been received great attentions in terms of economical yield. The purposes behind doing the current study were to investigate and compare effects of different regulated deficit irrigations on vegetative and reproductive parameters of olive grown under field conditions.
Materials and Methods: This study was aimed to investigate the effect of regulated deficit irrigation regime on vegetative, oil yield and oil content and water use efficiency of zard cultivar under field condition. This experiment was conducted in Javanmiri region (Geographical characters was longitude of 58˚, 45΄ E and latitude of 35˚, 34΄ N and the height of sea level 1215m) located in Kermanshah province. An experiment was conducted based on a randomized complete block design with three replications. Adult olive zard cultivar was uesd. Each experiment unit consists of three trees. Vegetative and reproductive traits were evaluated according to I.O.O.C. descriptors. five irrigation regimes including of full irrigation (as control), regulated deficit irrigation (100% of full irrigation during growing season and no irrigation during pit hardening), irrigation in three stages (before flowering, pit hardening and before harvesting), 60% of full irrigation (continuous deficit irrigation) and no irrigation (Rainfed). To evaluate the effect of irrigation regimes, some vegetative traits including current season growth and current season diameter, dry and fresh oil content, fruit mass percent, oil and fruit yield and water use efficiency were measured. Collected data were analyzed using SAS program.
Results and Discussion: Obtained results showed that the highest oil and fruit yield were observed at full irrigation and regulated deficit irrigation (100% of full irrigation during growing and no irrigation during pit hardening, but the lowest one found at Rainfed. The water use efficiency of oil yield of T3 was higher than 100ETc and other treatments.
In the arid and semi-arid as well as sub-tropical regions, water shortage is a normal phenomenon and seriously limits the agricultural potential. Therefore, under irrigation or rain-fed conditions, it is important for the available water to be used in the most efficient way. Regulated deficit irrigation is an optimizing strategy under which crops are allowed to sustain some degree of water deficit and yield reduction. During regulated deficit irrigation the crop is exposed to certain level of water stress either during a particular period or throughout the growing season. The main objective deficit irrigation is to increase water use efficiency (WUE) of the crop by eliminating irrigations that have little impact on yield, and to improve control of vegetative growth (improve fruit size and quality).
Conclusion: According to the results of this research, it can be concluded that regulated deficit irrigation had a significant effect on reproductive traits. Using regulated deficit irrigation improved pomological characteristics of olive including oil and fruit yield under drought stress and helped to save irrigation water in olive orchards.
Nasrin Farhadi; Mohammad Kazem Souri; Abolfazl Alirezalu; Hossein Rabbi Angoorani
Abstract
Castor oil due to extraordinary physicochemical properties has numerous applications in pharmaceutical, chemical, hygienic, biodiesel and nowadays in food industries. During plant growth and development, as well as during postharvest and processing, different factors may affect caster oil properties. ...
Read More
Castor oil due to extraordinary physicochemical properties has numerous applications in pharmaceutical, chemical, hygienic, biodiesel and nowadays in food industries. During plant growth and development, as well as during postharvest and processing, different factors may affect caster oil properties. This study was conducted to evaluate oil content and physiochemical properties under different sowing dates under climatic conditions of Tehran. The highest seed yield (1590.67 kg ha-1) and oil yield (774.43 kg ha-1) were obtained from 5th April Sowing date, that had significant difference with other sowing dates. In analyzed samples oil content were (%34.45-49/97), moisture content (%0.97-2.12), refractive index (1.470-1.473), chlorophyll content (0.26-0.40 mg Pheophytin/kg oil), acid value (0.28-0.62mg NaOH/g oil), peroxide value (0 meq O2/kg oil), soponification value (165.62-181.34 mg KOH/g oil) and iodine value (82.43-89.22 g I2/100 g oil). The results revealed significant differences for moisture and chlorophyll content, acid value (p