Medicinal Plants
Sepideh Houshmand; Saeideh Alizade; Sahebali Bolandnazar; Elyas Aryakia
Abstract
IntroductionTaking into account Iran's unique meteorological and biological characteristics due to its geographic position. This has contributed to the variety and abundance of plant species cultivated there. The Artemisia species, which are among Iran's most valuable plants, are members of the Asteraceae ...
Read More
IntroductionTaking into account Iran's unique meteorological and biological characteristics due to its geographic position. This has contributed to the variety and abundance of plant species cultivated there. The Artemisia species, which are among Iran's most valuable plants, are members of the Asteraceae family and are found across the country in reasonably large numbers. Antioxidants now play an indisputable role in the food, pharmaceutical, and healthcare industries. Given that the antioxidant capability is greatly influenced by the kind of solvent used, the technique used to extract the plants that were harvested from each location, as well as other factors like the weather, altitude, and light. The substantial antioxidant activity of phenolic and flavonoid compounds and their protective significance in cancer illnesses are caused by these compounds' regenerative properties. Materials and MethodsIn this work, Artemisia aucheri, a medicinal plant, was gathered from Semnan, Mazandaran, and Isfahan in Iran, and the antioxidant activity of these ecotypes was assessed. In this study, the quantity of total phenol and flavonoids in polar (ethanol) and non-polar (ethyl acetate) extracts, as well as the proportion and diversity of essential oil components, were assessed. Antioxidant content was also determined using the DPPH and FRAP techniques. Results and DiscussionThe most active antioxidant is found in the Semnan ecotype. The polar solvent of ethanol showed the strongest inhibition whereas the non-polar solvent of ethyl acetate shown stronger reducing activity, proving the importance of the extraction solvent on antioxidant activity in various processes. The non-polar extract (ethyl acetate) from the Mazandaran ecotype had the greatest flavonoid concentration, while the polar extract (ethanol) from the Isfahan ecotype had the highest phenolic content. The ethanolic extract performed the best when assessing total phenol. The most crucial elements of essential oils are oxidized monoterpenes. Oxygenated monoterpenes are present in 54.82% of the Semnan ecotype, 38.81% of the Mazandaran ecotype, and 24.41% of the Isfahan ecotype. In comparison to other ecotypes, the Semnan ecotype exhibited the most oxygenated monoterpene compounds and the greatest number of essential oil-containing compounds. ConclusionThese findings suggest that A. aucheri possesses abundant natural antioxidant sources and is useful in both the food and pharmaceutical industries. A key aspect is the act of extraction, which is focused on the extraction's goal. The solvent used during extraction significantly affects the outcomes. Regarding the chemical makeup of the compounds, the solvent's polarity directly affects the solutes that are extracted. Since phenolic chemicals are more attracted to polar solvents, they are found in plant samples. The kind of flavonoids found in plants and their degree of polarity determine the variation in the quantity of flavonoid content between polar and non-polar extracts. On the other hand, a variety of ecological, genetic, regional, and dietary variables may have contributed to the variation in phenolic contents, essential oils, and antioxidant chemicals found in the three analyzed ecotypes.
Medicinal Plants
Mohammad Bagher Razavinia; Nasibeh Pourghasemian; Farzad Najafi
Abstract
IntroductionHeavy metals, like cadmium, lead, and arsenic, harm air, soil, agriculture, and human health. Plants suffer from reduced growth, chlorophyll production, and enzyme activity due to heavy metal exposure. Reactive oxygen species are produced, damaging biological molecules. However, plants ...
Read More
IntroductionHeavy metals, like cadmium, lead, and arsenic, harm air, soil, agriculture, and human health. Plants suffer from reduced growth, chlorophyll production, and enzyme activity due to heavy metal exposure. Reactive oxygen species are produced, damaging biological molecules. However, plants have developed resistance mechanisms, including antioxidant stimulation. Flavonoids, complex compounds in plants, enhance resistance to heavy metals. Medicinal plants, rich in secondary metabolites like flavonoids, phenolic compounds, and alkaloids, show resistance to heavy metals. Origanum majorana as a medicinal plant, contains compounds that contribute to its heavy metal resistance. Based on limited studies, medicinal plants, particularly marjoram, have shown greater resistance to environmental stresses due to their secondary metabolites and the ability to produce uncontaminated essential oils in response to heavy metals like cadmium and lead. This study aimed to investigate the biochemical responses and growth of marjoram plants when exposed simultaneously to cadmium and lead, as well as the mutual effects of these two elements on marjoram behavior. Materials and Methods A factorial randomized complete block design experiment with four replications was used to study the effect of Cd in four concentrations (0, 6, 12 and 24 mg.kg-1 soil) as well as Pb in four concentrations (0, 150 300 and 450 mg. Kg-1 soil). The concentrations were determined based on previous reports and a preliminary experiment. Soil was prepared with appropriate amounts of cadmium chloride and lead chloride were added according to the desired concentrations. The contaminated soil was then incubated at field capacity moisture for two months. Seeds have been sown in germination trays. Seedlings at the three to four leaf stage were transferred to pots containing the contaminated soil. Plant harvest took place 42 to 52 days after the transfer to pots, specifically when the plants had just entered the flowering stage. The aboveground parts of the plants were harvested separately, and the roots were carefully removed from the soil. Half of the plants were dried at 105 °C for 24 h to determine the dry weight, Pb and Cd concentrations. The other half of the plants were used to measure biochemical traits including flavonoids, anthocyanins, malondialdehyde, protein, proline and some enzymatic antioxidants. The data was analyzed using a two-way analysis of variance (ANOVA), and the means were compared using the LSD test. A significance level of 95% was applied using SAS 9.2. Results and DiscussionIn this study, various parameters were measured including the dry weight of aerial parts and roots, concentrations of lead and cadmium in the aerial parts and roots, lipid peroxidation (MDA), flavonoids, anthocyanins, total phenols, proline, protein, and antioxidant enzymes including guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and catalase (CAT). The results of the analysis of variance showed that all the mentioned traits were influenced by the individual effects of lead and cadmium. However, there was no significant interaction between cadmium and lead on proline, protein, GPX, polyphenols, flavonoids, and anthocyanins. The dry weight of aerial parts and roots decreased in the presence of cadmium and lead, while the concentrations of lead and cadmium increased. However, this damage was more pronounced in the presence of cadmium compared to lead. The presence of cadmium in a lead-containing environment had an inhibitory effect on lead uptake by the plant, and vice versa. The highest level of MDA was reported in the combination of lead and cadmium concentrations of 450 and 24 mg/kg, respectively. The analysis of enzyme activity showed that the maximum catalase activity was observed in the combination of 6 and 450 mg/kg of cadmium and lead, respectively, while the minimum activity was found in the control group. Similarly, the highest APX activity was reported in the combination of 24 mg/kg of cadmium and zero lead, while the lowest activity was observed in the control group. The use of cadmium and lead at the highest consumption level compared to the control group resulted in a 204% and 40% increase in GPX activity, respectively. In the analysis of total phenols, flavonoids, anthocyanins, and protein, an increase in cadmium concentration from zero to 24 mg/kg led to a decrease of 52%, 42%, 208%, and 81%, respectively, while protein decreased by 39%. These traits showed an increase of 14%, 14%, 58%, and 40%, respectively, with an increase in lead concentration from zero to 450 mg/kg, while protein decreased by 24%. Based on the results, it appears that the increase in secondary metabolites with the increase in heavy metals has accompanied the plant's response to the prevailing conditions. Conclusion The study found that both cadmium and lead negatively affect the dry weight of plants, with cadmium having a greater impact. This reduction is particularly noticeable in photosynthesis, pigments, electron transport chain, and energy production. The highest concentrations of lead and cadmium (24-450 mg/kg) show the maximum decrease. As the concentrations of these elements increase in the growth medium, their concentration in the plants also increases. Lead has lower mobility and tends to accumulate in the roots compared to cadmium. Interestingly, the presence of cadmium inhibits the uptake of lead by the plant, and vice versa. This leads to an average inhibition of 39% for lead uptake by cadmium and 35% for cadmium uptake by lead in the aerial parts. The study also observed an increase in secondary metabolites, which act as antioxidants and help the plant cope with the stresses caused by cadmium and lead. These metabolites may also contribute to osmotic regulation along with the increase in proline. Based on these findings, it seems that these plants can be used in green spaces contaminated with moderate to low levels of cadmium and lead, particularly in mining areas.
Growing vegetables
Mohammad Hossein Aminifard; Sajjad Nadafan; Hassan Bayat; Mehdi Jahani
Abstract
IntroductionThe annual herb Trigonella foenum-graecum L. (Fabaceae) is cultivated worldwide as a semi-arid crop. It is commonly known as Fenugreek and used as both a spice and medicinal plant. Fenugreek is used to treat many ailments due to the presence of various bioactive compounds, like apigenin, ...
Read More
IntroductionThe annual herb Trigonella foenum-graecum L. (Fabaceae) is cultivated worldwide as a semi-arid crop. It is commonly known as Fenugreek and used as both a spice and medicinal plant. Fenugreek is used to treat many ailments due to the presence of various bioactive compounds, like apigenin, luteolin, orientin, quercetin, vitexin, isovitexin, saponins, amino acids, phenols, alkaloids, etc. Combining chemical and organic fertilizers offers a sustainable approach to nutrient management. This integrated strategy enhances the effectiveness of chemical fertilizers, fosters improved soil health, and minimizes nutrient loss from the system.Chicken manure is one of the types of animal manure and a source of organic matter to strengthen all types of soil. In addition to having nutrients, it is one of the cheap fertilizers compared to common fertilizers in the production of crops, and it is richer in nitrogen than other animal fertilizers. Potassium is a critical element for plant growth and development, playing a vital physiological role in plant health and resilience against biotic and abiotic stresses. Materials and MethodsTo investigate the effect of chicken manure and potassium sulfate on yield and biochemical traits of the fenugreek medicinal plant, factorial research was conducted in the form of randomized complete block design in three replications in the crop year 2021-2022. Experimental treatments included chicken manure at three levels (0, 1000, and 2000 kg.ha-1) and potassium sulfate at four levels (0, 1.5, 3, and 5 per thousand). To determine the seed yield after full ripening, the seeds were collected from one plant in each plot, weighed, and recorded. Arnon's method was used to measure the pigments in the leaves at the full flowering stage of the plant. To measure the amount of total phenolic compounds in the leaf using the Folin Cicalto method, antioxidant using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, total sugar using anthrone method, total flavonoid using aluminum chloride reagent method was used in the full flowering stage of the plant. Results and DiscussionThis experiment revealed that chicken manure significantly boosted crop yield and improved most biochemical traits, with the exception of sugar and antioxidant content.The amount of antioxidant activity decreased with increasing levels of chicken manure and soluble sugar was not affected by this manure. Treatment of 2000 kg.h-1 chicken manure has the highest phenol with 10.793 mg.g-1 dry weight, flavonoid with 4.475 mg.g-1 dry weight, Chlorophyll a with 2.591 mg.g-1 of fresh weight, Chlorophyll b with 3.055 mg.g-1 of fresh weight, and seed yield with 1185.8 kg.h-1. Regarding the impact of Soluptas on biochemical traits, all except phenol and antioxidant content peaked at a concentration of three parts per thousand. Notably, these peak levels were statistically indistinguishable from those observed at five parts per thousand.Treatment of 5 per thousand Soluptas also increased 28% seed yield, 13% soluble sugar, 20% phenol, 31% flavonoid, and 97% chlorophyll b. In the interaction effect in the treatment, it was observed that the highest amount of the two fertilizers had the highest amount of yield and biochemical traits, except for the antioxidant, whose activity level decreased with the increase of fertilizer levels. The results showed that the highest amount of soluble sugar in fenugreek leaves was related to the level of no chicken fertilization with Soluptas 5 per thousand at the rate of 21.53 mg.g-1 dry weight. The highest levels of both treatments (2000 kg.h-1 of chicken manure and Soluptas 5 per thousand) caused an increase in grain yield (1396 kg.h-1), phenol (12.86 mg.g-1 DW), and chlorophyll b (3.62 mg.g-1 FW) compared to no fertilization (control level). The highest amount of chlorophyll a was related to the interaction of 2000 kg.h-1of chicken manure and Soluptas 3 per thousand at the rate of 3.11 mg.g-1 of fresh weight. ConclusionOverall, chicken manure exhibited the strongest positive influence on the greatest number of traits among the single treatments. When considering the combined effects, a combination of 2000 parts per thousand chicken manure and 5 parts per thousand Soluptas appears to be optimal for enhancing the fenugreek plant's properties.
Medicinal Plants
Salimeh Makhtoumi; Shabnam Khoshbakht; Abbas Ali Nourinia
Abstract
Introduction
Inefficient and excessive use of chemical fertilizers in agriculture has caused soil erosion and pollution of water resources and has also been effective in reducing the quality of crops. On the other hand, the use of beneficial soil microorganisms as bio-organic enhances soil fertility, ...
Read More
Introduction
Inefficient and excessive use of chemical fertilizers in agriculture has caused soil erosion and pollution of water resources and has also been effective in reducing the quality of crops. On the other hand, the use of beneficial soil microorganisms as bio-organic enhances soil fertility, and results in healthier and richer nutritional needs is a further harvest away from ecosystem contamination. Increase crop in terms of quantity and quality without damaging the farm ecosystem, especially medicinal plants. Bio-fertilizers are the latest development in organic farming. They are also a gift from modern agricultural science that should replace chemical fertilizers on farms which play a vital role in maintaining long-term soil fertility and stability. Ocimum basilicuum is a grown aromatic and medicinal plant that is a leafy vegetable of the Labiatae family. This plant has different healing properties and is also used to flavor various food products due to its special taste. Therefore, in this study with the aim of providing a practical solution to reduce the use of artificial fertilizers and environmental pollution, the effect of vermicompost and biological fertilizers on the composition of secondary metabolites and growth of basil (Ocimum basilicuum) was studied.
Materials and Methods
This study was conducted in 2017-2018 to investigate the effects of vermicompost and biological fertilizers on some traits of basil (Ocimum basilicuum) in of Azadshahr in Golestan province. In this experiment, application of vermicompost at three levels (a1: no application, a2: application at a rate of 10% and a3: application at a rate of 20% by weight of soil) and application of biological fertilizers at three levels (b1: no application, b2: use of Bacillus subtillis, b3: use of natural element compounds) were examined. The experiment was carried out in a randomized complete block design with three replications in the exterior space as a pot culture. The alcoholic extract used in this study was performed by soaking. The amount of total phenol compounds was measured by the Folin Siocalto method and the total flavonoid content was measured by aluminum chloride colorimetric method. Data obtained from experiments using the software SAS Ver. 9.1 and comparison of means was performed using the least significant difference test (LSD). Excel software was also used to draw the graphs.
Results and Discussion
The results of analysis of variance showed that the application of vermicompost was significant on root fresh and dry weight, fresh and dry weight of stem, stem length, fresh and dry weight of leaves and leaf area. Also, the effect of biological fertilizers on root fresh weight and stem dry weight was significant. Comparison of means also showed that vermicompost 20% compared to control and vermicompost 10% in traits such as fresh weight of root (5.14), dry weight of root (7.25), fresh weight of stem (25.23), dry weight of stem (2.25), length stem (33.77), fresh weight of leaf (51.85), dry weight of leaf (8/08) and leaf area (75.13) had the highest values. No significant effect was observed between vermicompost and biological fertilizers. The maximum amount of total phenol in vermicompost treatments belonged to 20% vermicompost at 1.98 mg/g, and in biological fertilizers treatments to Probio96 at 1.96 mg/g. Also, the maximum levels of total flavonoids in plants treated with vermicompost were 20% and Probio 96 were 92.13 mg/g and 91.22 mg/g, respectively. The results show that vermicompost had the greatest effect on target organs such as leaf area, fresh and dry weight of basil leaves.
Conclusion
The trade and cultivation of medicinal and aromatic plants is an important part of agriculture. Medicinal and aromatic plants are the main source of known medicines. Therefore, obtaining methods to increase the yield and therapeutic indicators of medicinal plants is of particular importance. In the growth of medicinal plants and biomass production, the quality of raw materials used is important. Chemical fertilizers have several adverse effects on the environment and human health. These effects can include leaching and displacement of various soil layers, groundwater and surface water pollution, accumulation of heavy metals and nitrates, air pollution, acid rain, and chemical accumulation in plants, animals, and human tissues. According to the findings, it is generally recommended to use bio-fertilizers such as vermicompost and Probiot 96 as a suitable alternative to chemical fertilizers in plant nutrition to protect the environment, human health and the positive economic effects of medicinal plants
Postharvest physiology
Bahareh Ghorbani; Roghayeh Najafzadeh
Abstract
Introduction
Cherry fruit has a high nutritional value and because of its favorable taste, its attractive appearance is of great importance. Iran is the origin of many horticultural products, especially cherries. The quality and quantity of the Iranian cherry crop are much more suitable in comparison ...
Read More
Introduction
Cherry fruit has a high nutritional value and because of its favorable taste, its attractive appearance is of great importance. Iran is the origin of many horticultural products, especially cherries. The quality and quantity of the Iranian cherry crop are much more suitable in comparison with other producing countries due to suitable climatic conditions and significant areas under cultivation. This fruit has a very short shelf life due to its susceptibility to transport damage. After harvest, the cherry fruit decays quickly and in some cases, due to the time of transfer and marketing, does not reach consumers with good quality. Therefore, the use of natural compounds to increase shelf life and maintain its quality seems necessary inlcuding lower moisture, and perishability. On the other hand, storage of products involves a series of biochemical changes that take place, which is accompanied by softening of the fruit, destruction of the cell wall, and reduction of the external and internal quality of the products. Therefore, the use of appropriate compounds to increase durability and maintain its quality seems necessary. Phytohormonal treatments such as melatonin increase the cold resistance of fruits during storage and reduce the development of mechanical damage in the refrigerator during fruit storage. Melatonins have an amphiphilic indole ring structure, through which they can easily move out of the cell and play a role in the structure of the cell wall or membrane. Besides, melatonin is structurally similar to auxin and has similar effects, helping to maintain cell wall structure under stress and reducing the denaturation of cell wall proteins. Melatonin is also known as a biostimulant. These biostimulants in plants affect the production of secondary metabolites, biosynthesis of various phytohormones, facilitate plant uptake of nutrients, stimulate growth, and increase product quality and quantity. Melatonin, in interaction with other signaling agents, increases fruit metabolism and induces stress resistance.
Materials and Methods
In the present study, cherry fruits were harvested from the commercial garden at full maturity and after washing with distilled water with zero melatonin (control), 50, 100, 200 micromolar were treated by immersion for 5 minutes and Store at 1.5 with a relative humidity of 85% for 35 days. Parameters such as weight loss, titratable acidity, organic acids, soluble solids, antioxidants (DPPH), phenolic compounds, anthocyanin content, peroxidase, and ascorbate peroxidase activity were examined per week.
Results and Discussion
The results indicated that fruits treated with 200 μM melatonin showed less weight loss than other treatments and controls, and melatonin prevented fruit water loss, as well as of phenolic compounds, titratable acidity, soluble solids. The activity of peroxidase and ascorbate peroxidase enzymes have all increased. These compounds preserve the fruits during storage and increase the oxidation resistance. Melatonin coating on cherry fruit and can protect cells from stress by raising antioxidant levels. Consumption of edible coatings on horticultural products such as fruits increases durability and marketability. Edible coatings reduce fruit rot and prevent microbial growth on their surface. These coatings have a positive effect on physical properties and reduce physiological activity. Oral coatings better preserve organic acids by changing the internal atmosphere and slowing down the respiration of the fruit.
Conclusion
The use of exogenous compounds or growth regulators has in many cases been effective in reducing the effects of environmental stresses. These results show that the combination of melatonin has high antioxidant properties and can act as a protective compound and inhibit free radicals. Besides, it acts as a signaling molecule at the cellular level and manages antioxidant activity, thus preventing membrane damage and lipid peroxidation of the membrane. Melatonin also increases plant tolerance to environmental stresses and follows this mechanism by regulating gene expression in various horticultural crops. The use of melatonin improves the process of coping with oxidative stress by further regulating the biosynthesis of anthocyanins and the antioxidant-encoding gene.
Decomposition of cell wall compounds may increase total soluble solids, melatonin reduces the process of wall destruction, and preserves the appearance of the fruit. Increasing the amount of soluble solids increases the total antioxidant, phenolic and increases the activity of antioxidant enzymes. Melatonin is also at the forefront of stress management, and other antioxidants act as support after melatonin. Melatonin can prevent further stress damage by activating the plant signaling pathway.
Postharvest physiology
Vahid Anisi; Yahya Selahvarzi; Maryam Kamali; Bahram Abedi
Abstract
Introduction
Cucumber is a vegetable with a low capacity for storage; it usually loses quality 14 days from the beginning of storage. The benefits of cold storage are not the same for all the fruit or vegetables, some given vegetables are more suitable for cold storage than others. However, pre-cooling ...
Read More
Introduction
Cucumber is a vegetable with a low capacity for storage; it usually loses quality 14 days from the beginning of storage. The benefits of cold storage are not the same for all the fruit or vegetables, some given vegetables are more suitable for cold storage than others. However, pre-cooling is always advisable, because the products takes profit from the benefits of low temperatures in cold storage rooms. Due to the short shelf life of cucumber and the high speed of reducing its quality, various methods are used to maintain the quality of cucumber, such as edible coatings. Propolis, also called “bee-glue,” is a natural resinous substance produced by honeybees from plant exudates, beeswax, and bee secretions in order to defend the hives. Propolis has an important role in prevention of food loss weight and waste, thus helping to ensure food safety and security. The concoction of aqueous propolis extracts has a lower cost as compared to hydroalcoholic extracts and it is believable that both, aqueous and hydro alcoholic extracts, present similar concentrations of phenolic compounds resulting in a product of appropriate functional characteristics. Herein, the biochemical composition and efficacy of propolis in maintaining the postharvest storability of food products were discussed to provide a comprehensive guide to farmers and food processing and storage sectors and to scientists.
Materials and Methods
In order to investigate the effect of two factors of hydro cooling and propolis as an edible coating on cucumber shelf life, this study was conducted in the spring and summer of 2019 in the laboratories of horticultural sciences, Faculty of Agriculture, Ferdowsi University of Mashhad. The factorial experiment was based on a completely randomized design. Experimental treatments included three levels of propolis alcoholic extract (0, 4 and 8%) and two temperature treatments (4 (hydro cooling temperature) and 25 ° C) in 4 replications.
Weight loss, tissue firmness, extract pH, total soluble solids, chlorophyll a, chlorophyll b, total chlorophyll, total phenol and antioxidant activity were measured. The experimental data were analyzed using Jump-8 statistical software and the means of treatments were compared by LSD test at 5% probability level.
Results and Discussion
Results showed that the interaction of treatments had an effect on fruit weight loss percentage, firmness, and antioxidant activity, chlorophyll and total soluble solids. Thus, the highest percentage of fruit weight loss was observed in the control treatment (without propolis) in 4°C (5.02%). Foliar application of fruits led to an increase in firmness of fruit tissue with propolis in both concentrations of 4 and 8% compared to the control treatment (no foliar application with propolis) in both temperature treatments. The highest total chlorophyll content was in 8% propolis treatments + temperature of 24 °C (8.96 mg / gfw), treatment of 8% propolis + temperature of 4 °C (8.68 mg/gfw) and treatment of 4% propolis + temperature of 4 oC (7.93 mg/gfw) significantly. In addition, antioxidant activity increased in the treatments of 4 °C+ foliar application with propolis 4 and 8%. In general, although fruits treated with 24 ° C showed more weight loss than 4 °C, the use of both concentrations of propolis improved the above trait, reducing the amount of fruit phenol and tissue firmness and other biochemical traits. Studies have shown that the chemical composition of the propolis samples which a certain breed of bees (Apis mellifera intermissa) made have 17 different chemical compounds. They noted that the main phenolic compound was caffeic acid (0.85 mg·g−1 EAP) and the main flavonol compound was pinocembrin (0.82 mg·g−1 EAP). Significant (P ≤ 0.05) differences were observed in dragon fruit quality when treated with different concentrations of ethanolic extract of propolis (EEP) (0.25, 0.50, 0.75 and 1.0%) and stored at 20 ± 2 °C and 80 ± 5% relative humidity (RH) for 20 days, which matched our results. Passos et al. (2016) reported test panel did not detect significant differences amongst coated and not coated cv. Prata bananas up to six days of storage. Propolis extracts.
Conclusion
In addition to a broad spectrum of antimicrobial activity, contain hydrophobic composites that assist in ameliorating attributes as biodegradable films on fruits.
Medicinal Plants
Shirin Taghipour; Abdollah Ehteshamnia; Hamed Khodayari; Hassan Mumivand
Abstract
Introduction
Due to their pleasant and soothing taste and odor, attractive colors, and medicinal purposes, Chrysanthemum morifolium flowers have been widely used as food, tea, ornamentation, and medicine. It has been reported that C. morifolium can reduce hyperactivity of the liver, improve eyesight ...
Read More
Introduction
Due to their pleasant and soothing taste and odor, attractive colors, and medicinal purposes, Chrysanthemum morifolium flowers have been widely used as food, tea, ornamentation, and medicine. It has been reported that C. morifolium can reduce hyperactivity of the liver, improve eyesight and regulate cellular immunity. Pharmacological investigations have shown that Flo's chrysanthemum exhibits antibacterial, antioxidant, anti-inflammatory, and heart-protective characteristics. Previous phytochemical studies on caffeic acid derivatives, flavonoids, triterpenoids, glycosides and alkaloids have been isolated from Flo's chrysanthemum. In this study, chrysanthemum cultivars were evaluated in terms of having secondary compounds and desirable medicinal properties, as well as antibacterial effects to introduce superior cultivars and purposeful planning for breeding research. The purpose of the present study, 25 cultivars of C. morifolium were compared in terms of essential oil content, leaves total phenolic, flavonoid and antioxidant activity.
Materials and Methods
In this experiment, 25 chrysanthemum cultivars were studied in terms of essential oil percentage, antioxidant index, total phenol and flavonoid content and antibacterial effects in a randomized complete block design in Lorestan University research farm in the year 2016. Essential oil was extracted from dried flowers in the shade using a Clevenger apparatus for 3 hours. Evaluation of antioxidant activity of the extract was measured by DPPH method based on the method of Kulisic et al. (2004). The amount of flavonoids was measured by aluminum chloride and total phenol by Folin - Ciocalteu reagent colorimetric. Ward analysis was done to classify the cultivars.
Results and Discussion
The results of analysis of variance showed that the studied chrysanthemum cultivars had significant differences in terms of all studied phytochemical traits. According to the obtained results, among different cultivars, the total amount of phenolic compounds is between 14.52-47.90 mg/g dry weight, the total flavonoid content is between 11.59-55.62 mg/g DW and IC50 index varied between 83.92 and 257.43 μg/ml. The highest amount of total phenol was present in Avadis and Dila cultivars (45.86-47.90 mg/g dry weight), while Yasamin cultivar (14.52 mg/g DW) had the lowest amount. Also, in terms of total flavonoid content, Golnar and Farahnaz cultivars had the highest total flavonoid content with 55.62 and 53.01 mg quercetin/g DW, respectively. Cluster analysis divided all studied cultivars into five groups. The percentage of essential oil among different cultivars varied between 0.41 to 0.62% and a high variability was observed in terms of the amount of essential oil in the studied cultivars. The highest percentage of essential oil was related to Farhnaz and Elmira2 cultivars. In general, the results showed high antioxidant activity of most cultivars. Therefore, chrysanthemum extract can be introduced as a suitable source of natural antioxidants. Also in this study, Paridokht, Sana and Ashraf cultivars were studied in terms of antioxidant and antibacterial index and Farahnaz and Elmira 2 cultivars appeared superior to other cultivars in terms of essential oil production. Hedaei et al. (2018) studied evaluation of some bioactive compounds and antioxidant activity of leaf methanolic extract and flower essential oil content from different cultivars of Chrysanthemum morifolium, in this review, total phenol and flavonoid contents and IC50 values in different cultivars were ranged from 17.63-33.20 mg/g DW, 12.62-53.17 mg quercetin/g, and 54-228 μg/ml respectively. The highest phenolic content was in cultivar “Poya3” (33.20 mg/g DW), whereas the cultivar “Sahand2” (17.63 mg/g DW) contained the lowest value. Also, in terms of total flavonoid content, cultivars “Marmar” and “Sahand 2” had the highest and the lowest flavonoids with 53.17 and 12.62 mg quercetin per gram, respectively.
Conclusion
The results of the present study indicate a significant difference between different cultivars in terms of the total amount of phenolic, flavonoid and antioxidant compounds that the existence of such diversity can be the role of cultivar and genetics in the production of these compounds. According to the results of this study, chrysanthemum cultivars with desirable levels of phenolic and flavonoid compounds can be used as a source of natural antioxidants as an alternative to synthetic antioxidants. In this study, Sana, Paridokht and Ashraf cultivars appeared superior to the existing genotypes in terms of phytochemical and antibacterial traits. The results of this study can be used to select the correct parents for purposeful crosses in subsequent chrysanthemum breeding programs in order to improve the phytochemical traits of existing cultivars.
Breeding and Biotechnology of Plant and Flower
Fatemeh Bidarnamani; Seyyed Najmodin Mortazavi; Yasob Shiri
Abstract
Introduction
Phalaenopsis is one of the beautiful and commercial species of orchid family that there is little research on its medicinal properties. Phalaenopsis orchids can be grown outdoors in warm, humid conditions that are damp but not wet, in a location that is shady but bright. Since the ...
Read More
Introduction
Phalaenopsis is one of the beautiful and commercial species of orchid family that there is little research on its medicinal properties. Phalaenopsis orchids can be grown outdoors in warm, humid conditions that are damp but not wet, in a location that is shady but bright. Since the introduction of orchid meristem culture in 1960, branching in micro-propagation methods develop based on using two clearly different culture schemes. It have been used from medicinal properties of orchids for anti-rheumatic, anti-inflammatory, anti-viral, anti-cancer, anti-seizure, diuretic, nutrient protection, relaxation, anti-aging, wound healing, hypoglycemia, anti-tumor, antimicrobial, antibacterial, anti-oxidants and anti-diarrhea.
Material and Methods
The purpose of this study was to evaluate the canonical correlation between morphological and phytochemical characteristics of five phalaenopsis orchid varieties: Nottingham, Bucharest, Andorra, Memphis, and Dubrovnik. Micro-propagation of orchid seeds was performed after sterilization of capsules by bleach and ethanol. Leaf and root organs of 5 orchid varieties were harvested from Chen medium in Institute of Agricultural Research, University of Zabol, on 2020. The sliced samples were dried in an oven at 50 °C for 72 hours, after separating the leaves and roots of each variety. The powdered leaves and roots of each variety (5 g) were separately immersed in 50 ml of ethanol for 24 hours at room temperature. Then the extracts were placed on a shaker at room temperature at 120 rpm.
Result and Discussion
The results showed that the first two canonical variables were significant and third variable was not significant. The first canonical variable has the highest special value of 65.83 and the second and third canonical variables have 4.59 and 0.10 special values, respectively. According to this research the first canonical variable with the highest special values, square of canonical correlation and the most cumulative percentages should be studied in all morphological and phytochemical characteristics. Significant canonical correlation in morphological characteristics fit 94% of the total variance of physiological variables, while significant canonical variables in phytochemical characteristics fit 100% of the variance of phytochemical characteristics. Due to the fact that phalaenopsis orchid flower has many leaf and root wastes, the findings of this study show that due to the medicinal properties of this plant, we can reduce the waste of this plant in greenhouses and production centers of this flower. In this study, the amount of phenol, flavonoid and antioxidants were determined. Also the relationship between morphological and phytochemical traits showed that this plant has medicinal properties. The lowest number of leaves belongs to Memphis variety and the highest number of leaves belongs to Nottingham variety, among the studied varieties. Therefore, it can be concluded that the roots are longer and shorter in orchid varieties with white (Nottingham) and purple (Memphis) flower respectively. Also, the second focal variable of root trait with the highest coefficient had a negative correlation with the number of leaves and root length, which shows that in the second correlation of the number of leaves and root length, the number of roots will decrease. In the second focal variable, the number of roots had a positive focal correlation with leaf length. That is, the closer we get to the second center of correlations between morphological traits, the more direct and positive becomes the relationship between root number and leaf length traits.
Conclusion
According to the results and high percentage of fitness in phytochemical characteristics, it can be concluded that phytochemical traits can more precisely express the correlation between the traits. Also it showed significance of canonical correlation between two variable groups, the relationship between phytochemical and morphological traits of five varieties of phalaenopsis orchid. In general, the results of this study showed orchid varieties have high phenolic and flavonoid compounds and have the highest restraint power of free radical in canonical correlation, and they can be used as medicine. In this study, it was found that Phalaenopsis orchid varieties had phenolic content and good antioxidant capacity relatively and there was a high positive correlation between morphological and phytochemical traits and enhanced with adding the plant's length or number of leaves containing phytochemical compounds. Also, according to the results of this study and similar findings in other research, it was found that the production of secondary metabolites of orchids and other plants under the influence of genetic and environmental conditions can affect the production and amounts of chemical compounds and medicinal performance of plants.
Medicinal Plants
Zeinabsadat Shahzeidi; Saeid Hesami Tackallou; Leila Amjad; Hakimeh Zali; Alireza Iranbakhsh
Abstract
Introduction UV-C (254-280 nm) and 280-320 nm) UV-B, UV-A (320-390nm) wavelengths are irradiated with three ultraviolet strips and have detrimental effects on the growth of a number of plants. Ultraviolet light is an important non-living factor that can stimulate the production of secondary metabolites, ...
Read More
Introduction UV-C (254-280 nm) and 280-320 nm) UV-B, UV-A (320-390nm) wavelengths are irradiated with three ultraviolet strips and have detrimental effects on the growth of a number of plants. Ultraviolet light is an important non-living factor that can stimulate the production of secondary metabolites, including antioxidant compounds in plants. Ozone depletion and its consequences, including direct UV radiation on the planet and its effects on crops and medicinal plants, are among the topics that have received very little study. Ultraviolet light in nature occurs only at low intensities, but if the inhibitory effect of the ozone layer in the stratosphere is significantly the result of nitrogen and hydrocarbon oxides the weaker the halogen, the higher its amount.Materials and Methods Portulaca oleracea seeds were prepared by Pakan Isfahan Company. The aim of this study was the effect of ultraviolet rays at different levels (UV-C: 0, 100, 200, 300, 400, 500, 600, and 700 nm) on the activity of photosynthetic pigments and biochemical traits of portulaca oleracea in factorial in a completely randomized design with three replications. After transferring the seeds of portulaca oleracea, the healthy and uniform seeds of this plant were sterilized in 15% sodium hypochlorite solution for 154 minutes and then washed thoroughly with distilled water and placed in a petri dish for germination. Moisture was supplied through filter paper soaked in distilled water. The seeds were planted in pots filled with cocopeat and perlite evenly and watered for 20 days with a half-strength Hoagland solution. Plants were grown for 20 days at a temperature of 30 ± 2 ° C and a light period of 8.16 (light / dark, respectively). Plants for one week, every other day, and for 3 minutes each time by two fluorescent lamps with a wavelength of 260 nm exposed to ultraviolet C (at a distance of 30 cm from the UV light source with an intensity of 27 (w / m2) were located. The traits studied in this study included chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, phenol, flavonoids, and antioxidant activity. In this study, the effect of ultraviolet light on the activity of photosynthetic pigments and biochemical traits of portulaca oleracea was investigated factorially in a completely randomized design with three replications.Results and Discussion The results of the mean comparison showed that the UV treatment of chlorophyll a, b, total chlorophyll, carotenoid of portulaca oleracea was reduced compared to the control; However, UV treatment of portulaca oleracea significantly increased phenol, flavonoids, and antioxidants compared to the control. The effect of different doses of ultraviolet rays on phenol and portulaca oleracea antioxidants showed that the UV-C highest and lowest were 700 and 100 nm, respectively. Decreases in carotenoid content can result in either inhibition of pigment synthesis or their breakdown and degradation. The results of this report indicate significant changes in phenols and flavonoids as compounds it absorbed ultraviolet rays compared to control cells.Conclusion It can be said that excessive exposure to radiation may affect chlorophyll levels by inhibiting chlorophyll biosynthesis or accelerating its degradation. Oxygen is an electron receptor in the electron transport system that produces energy from adenosine triphosphate (ATP) in the body. Under certain conditions, oxygen can be converted to a single electron, creating free radicals. When oxygen is converted to a single electron, it is called active oxygen (ROS). These free radicals cause oxidative stress in plants which oxidative stress leads to damage to macromolecules such as DNA, proteins and so on. Environmental stresses, including UV radiation, produce active oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2-), and hydroxyl radicals (OH), which cause oxidative stress and cause damage to cells, such as DNA. And cause the destruction of these compounds. The plant contains compounds that act as active antioxidants and sweep away active oxygen. In the present study, the observed increase in phenols, flavonoids and antioxidants indicates an increase in the production of free radicals under ultraviolet radiation and shows that the production of these radicals is more than the plant's defense capacity and has caused damage to plant biological membranes. In summary, the application of controlled ultraviolet light stress can provide a new alternative strategy to increase the productivity of the portulaca oleracea plant. Modulating UV-C light in agricultural systems is a promising tool to increase crop production.
Pomology
Sadegh Azizifar; Vahid Abdossi; Rahmatollah Gholami; Mehrdad Ghavami; Ali Mohammadi Torkashvand
Abstract
Introduction: The availability of water for irrigating crops is one of the serious challenges at present and the future of the world. Drought stress has harmful effects on plant growth and productivity, though bringing some serious changes in plant physiology and biochemistry. Drought reduces plant growth ...
Read More
Introduction: The availability of water for irrigating crops is one of the serious challenges at present and the future of the world. Drought stress has harmful effects on plant growth and productivity, though bringing some serious changes in plant physiology and biochemistry. Drought reduces plant growth and yield by having negative effects on plants water potential, cell division, photosynthesis activity, chlorophyll content, and protein synthesis. Although olive naturally tolerates drought, studies had shown that drought undermines its growth, yield and photosynthesis. Employing some appropriate transpiration-reducing approaches could induce olive tolerance towards water deficiency. In this regard, kaolin, through raising light reflection and diminishing the rate of transpiration, is able to lessen leaf temperature in the stressed plants. Salicylic acid (SA), as a strong signaling molecule in plants, regulates physiological and biochemical functions effective in defense mechanisms and also boosts biological and non-biological factors involved in augmenting plants.. The major roles of SA in drought- stressed plants are as follows: activation of antioxidant defense system, production of secondary metabolites, synthesis of osmolytes, optimization of mineral status and maintenance of proper balance between plant photosynthesis and growth. Although some information over effects of SA and kaolin individually on stressed plants is available, to the best of our knowledge, their simultaneous effects on plants under stressful conditions has not been investigated yet. Therefore, the present study was aimed to investigate different applications of SA and kaolin (i.e. individually and simultaneously) on field-grown olives under drought condition.Materials and Methods: This research was conducted in Dalahu Olive Research Station located in Kermanshah province. This experiment was designed as a factorial experiment in the form of a randomized complete block design with 3 replications. Factors included different foliar spraying (i.e. control, 1 mM SA, 2.5% kaolin, and a combination of them in the mentioned concentrations) and irrigation at three levels (i.e. 100, 75, and 50% of water requirement). Irrigation was performed based on three-day interval schedule according to the above method by measuring daily evapotranspiration and required volume of water by considering the plant coefficients of olives and by drip irrigation.Results and Discussion: Although olive tree is a drought-tolerant plant, drought diminished its yield. The results of this study demonstrated a decrease in total yield of olive trees due to water deficit in different years. In this regard, water deficit under high temperature and low atmospheric humidity are believed to bring about a reduction in yield of drought-stressed olive. The results of this research showed that the foliar application of SA and kaolin on olive trees led to a reduction in ionic leakage and malondialdehyde (MDA) and an increase in RWC, chlorophyll content, phenol and total yield, as compared to the control. Foliar application of SA caused a significant increase in proline content and total carbohydrates, while kaolin had no significant effect on aforementioned traits. It seems that a reduction in oxidative damage and an increase in yield of olive cultivars under different irrigations manifested several defense mechanisms induced by exogenous application of SA and kaolin. In this context, kaolin was found to protect leaves and fruits from harmful ultraviolet rays and this remarkably improves the performance of drought-stressed plants by a decrease in the ambient temperature of plants in order to mitigate deleterious effects of drought such as oxidative damage, chlorophyll degradation, and lowering RWC. These results have been substantiated for different olive cultivars at different parts of the world under this condition.In the present study, SA increased chlorophyll content, RWC, proline content, carbohydrate and total phenol; as a result, the yield of SA- treated plants was higher than that in control plants. Similarly, Brito et al (5) reported that applying SA on drought-stressed olive improved osmolate accumulation, photosynthesis activities, RWC and chlorophyll content. The accumulation of phenolic compounds in SA-treated plants is believed to protect plants against stressful conditions. Therefore, the role of SA and kaolin in alleviating drought in favor of enhancing plants yield represents their efficiency under such condition. In the present study, we also employed a combination of SA and kaolin and the results showed no synergistic function between them on most traits. Therefore, to reduce the effects of drought on olive tree, it is recommended to utilize SA or kaolin separately.
Azadeh Saffar Yazdi; Ali Ganjeali; Reza Farhoosh; Monireh Cheniany
Abstract
Introduction: Purslane (P. oleracea) is considered as valuable plant due to its high antioxidant compounds and important fatty acids such as omega-3 and 6. Phenolic and flavonoid compounds are one of the most important constituents in the purslane. Phenolics are a large group of natural plant compounds ...
Read More
Introduction: Purslane (P. oleracea) is considered as valuable plant due to its high antioxidant compounds and important fatty acids such as omega-3 and 6. Phenolic and flavonoid compounds are one of the most important constituents in the purslane. Phenolics are a large group of natural plant compounds with antioxidant and Anti-inflammatory properties. Flavonoids, as a subset of phenolic compounds, have a wide range of effects on plants, including antioxidant activity and improve resistance to environmental stresses. Callus culture is one of the important strategies for the production secondary metabolites, which are difficult to produce chemically. Plant growth regulators including auxins and cytokinins play a crucial role in the stages of plant growth. Various combinations of these two hormones are used to make the desired changes in the cultures. Studies suggest that the accumulation of secondary metabolites can be increased by the application of different elicitors in medium. Researchers reported an increase in the content of secondary metabolites such as phenol and flavonoid compounds in calli treated with elicitors such as yeast extract. The purpose of this study was to determine the best explant, medium and hormonal treatment for calli induction of purslane. The effect of different levels of yeast extract on total phenol and flavonoid content and antioxidant capacity of purslane calluses was also investigated.
Materials and Methods: Seeds of purslane plant were cultivated in a solid 1/2MS medium for the preparation of sterile seedlings. The explants from sterile seedlings including to leaves, 1 cm stem specimens and terminal buds, were placed on MS and 1/2MS medium containing 0, 0.1, 0.3, and 0.5 mg L-1 BAP and NAA. After five months, calluses were evaluated for callogenesis and some morphological traits such as color, texture, and size, fresh and dry weight. This experiment was conducted based on completely randomized design with three replications. In the second experiment, the calluses obtained from the previous stage were transferred to MS medium with selected hormone treatment of the first experiment (0.5 mg L-1 NAA and BAP) and different levels of yeast extract (0, 125, 250, and 500 mg L-1). Total phenol and flavonoid contents of the calluses were determined by Folin-Ciocalteau and aluminum chloride methods, respectively. Furthermore, Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to determine the antioxidant activities.
Results and Discussion: The results showed that 1/2MS medium was suitable for sterile seedling production from purslane seeds. Based on the present study, only stem explants in a medium containing BAP and NAA, produced durable calluses. The color of the resulting calluses were green and had a constant and firm texture. The highest callus percentage (90.46%), the size (21.6 mm), and fresh (1826.5 mg) and dry weight (75.33 mg) of calluses belong to MS medium containing 0.5 mg L-1 BAP and NAA. Results of the second experiment showed positive and significant effects of yeast extract on the total phenol, flavonoid contents and antioxidant activities. The highest content of total phenol (664.12 mg GAE 100g-1 DW), flavonoid (42.25 mg QE 100g-1 DW) and FRAP data (787 µmol Fe g-1 DW) were obtained from the calli treated with 500 mg l-1 yeast extract. The maximum DPPH IC50 (2.45 mg ml-1) was also observed in control. The formation of callus associated with plant species, hormonal composition, the stage of development, and the type of explants. Auxin and cytokinin as plant growth regulators are key factors for controlling cell division in tissue culture. In most studies, callus formation in purslane plant were induced in medium containing auxin and cytokinin. The presence of green calluses derived from purslane explants can be due to the formation of chloroplastids in the cells of the callus tissue that rapidly produce chloroplasts under light conditions. In the second experiment, increased phenolic and flavonoid compounds with yeast extract treatment probably resulted in increased antioxidant activity.
Conclusion: In the present study, 1/2MS medium is suitable for the production of sterile seedlings from purslane seeds. MS medium containing 0.5 mg l-1 BAP and NAA is the best treatment for calli induction from stem specimens. The concentration of 500 mg L-1 of yeast extract is introduced as the most effective concentration for increasing the phenolic and flavonoid content and antioxidant activity in the purslane calluses.
Marjan Hosseini; Seyyed Morteza Zahedi; Mahdieh Karimi; Asghar Ebrahimzadeh
Abstract
Introduction: Mango (Mangifera indica) is a tropical fruit native to India whose global production in 2014 reached nearly 45 million tones. Mango is a commercially important fruit and improvement in its storage is of special importance. Mango is a Climacteric fruit whose ripening is done by exogenous ...
Read More
Introduction: Mango (Mangifera indica) is a tropical fruit native to India whose global production in 2014 reached nearly 45 million tones. Mango is a commercially important fruit and improvement in its storage is of special importance. Mango is a Climacteric fruit whose ripening is done by exogenous or endogenous ethylene. In plants, Polyamines such as spermine, spermidine, and putrescine contradict ethylene because of a common precursor (s-adenosyl methionine (SAM). During ripening, different qualitative and nutritional changes occur in the fruit, e. g. changes in color, tissue softening, accumulation of sugars and organic acids, and great changes in taste, flavor, aroma and plant biochemical materials. Fruit ripening is a complicated process, complementary to fruit development, and a start to its senescence. In general, senescence of a fruit is related to loss of membrane lipids, destabilization of membrane matrix, and lipid peroxidation. Recently, naturally active biological products are applied in a large amount for increasing the storage life and quality of the fruits and delaying their senescence.This study was carried out to investigate the effect of different concentrations of spermidine on the quality and vase life of a local mango variety of Minab.
Materials and Methods: Healthy fruits, uniform in size, shape, color, and degree of maturity were selected from a mango orchard in Minab and their original physical and chemical characteristics on the first day were measured after washing with water and drying. Statistical analysis of data was done by a general linear model (GLM) with SAS (version 9.1) and mean comparisons were performed using Duncan's multiple range test. Treatment solution in the rate of 0, 0.5, 1, and 2 mM spermidine (SIGMA) was made and its pH was set to 5 using NaOH. One liter of distilled water was used in the control treatment. The treated samples were immersed in solutions of different concentrations of spermidine just once for 30 minutes. During 24-days of shelf life, storage temperature was 15 °C and the relative humidity was 85 to 90 percent. Measurements were on the zero, 8th, 16th, and 24th days. Characteristics such as weight, firmness, flavor index, phenol, ascorbic acid, qualitative characteristics (PH, TA and TSS), and sensory evaluation were measured.
Results and Discussion: The results showed that physical and biochemical qualities in the control fruit were lower compared to the other treatments. The Polyamine treatment with spermidine, especially at the concentration of 2 mM, significantly maintained weight loss and reduction of vitamin C during storage of fruits. Spermidine treatments increased ascorbic acid and other organic acids in fruit juice and reduced pH. Increased acidity in spermidine treatments of these substances play an active role in coping with storage stress. Moreover, with reduction of tissue respiration, the consumption of organic acids decreased during storage. The results showed that increasing the concentration of spermidine leads to the least decrease in the phenol flesh. Firmness gradually decreased during storage and at the end of shelf life, there was significant difference between the treatments. It was found that treatments with 1 and 2 mM spermidine were the best. Furthermore, the effect of spermidine on the total soluble solid solutions in the flesh of mango fruit was not significant during storage. But skin color, taste, flavor, and aroma index were more favorable. Treatments that delay production of structural lipids led to the production of aromatic volatile substances, which produced a favorable aroma in fruits. It seems that increasing spermidine concentration plays an important role in mango fruit fragrance at the end of shelf-life. The 2 mM spermidine treatment led to the highest total content of phenol and showed the lowest pH in fruit juice.
Conclusions: Spermidine, that is naturally present in animals and plants in particular, belongs to the amine groups. The results indicated that spermidine maintains firmness and extends shelf life of mango fruits and has a significant and beneficial impact on the quality characteristics including weight, color, taste, aroma, and vitamin C during storage. It seems that spermidine of 2 mM concentration has tangible impact on mango fruits and it is recommended in mango store rooms. There is a competition in production of Ethylene and polyamides of spermine, spermidine, and putrescine in plants, due to their common precursor namely S-adenosyl methionine, yet they act oppositely in ripening and senescence processes. Application of polyamides had extraordinary effects on the quality of some fruits during storage.
kambiz mashayekhi; H. Sadeghi; V. Akbarpour; S. Atashi; Seyyed Javad Mousavizadeh; M. Abshaei; Z. Nazari
Abstract
Citrus fruits contain numerous nutrients and secondary metabolites including sugars, vitamin C, flavonoids and phenols which have high antioxidant activity and nutritional value. Factors such as cultivar, type of stock and fruit position affect the amount of these compounds. Hence in this study the amount ...
Read More
Citrus fruits contain numerous nutrients and secondary metabolites including sugars, vitamin C, flavonoids and phenols which have high antioxidant activity and nutritional value. Factors such as cultivar, type of stock and fruit position affect the amount of these compounds. Hence in this study the amount of sucrose, glucose, total sugar, vitamin C, flavonoids and phenols in pulp, mesocarp and flavedo of Parson Brown and Mars oranges grafted on Citrange, Cleopatra and Rough Lemon stocks were measured. According to the results, maximum of vitamin C was in Parson Brown cultivar on the Citrange and Cleopatra grafting stocks. The highest total sugar was recorded in Parson Brown and Mars cultivars on the Rough Lemon stock (P