Zahra Karimian; Nasim Zarin
Abstract
Background and Objectives: Tulip flower is one of the most popular flowers in the world. This bulbous flower has about 150 species with more than 6000 recorded cultivars. In the recent years, planting of ornamental bulbous plants such as tulip has been common in many cities of Iran during Nowruz. ...
Read More
Background and Objectives: Tulip flower is one of the most popular flowers in the world. This bulbous flower has about 150 species with more than 6000 recorded cultivars. In the recent years, planting of ornamental bulbous plants such as tulip has been common in many cities of Iran during Nowruz. Selection and order of the bulbs often is done based on aesthetic and flowering factors. Feasibility of estimation of some aesthetic traits in tulip cultivars can be a management approach in the cities, so that if urban managers in the landscape field know the time and duration of flowering, they can have an exact plan for the tulip planting in the Nowruz. The study of ornamental traits, flowering date and duration of tulip flower have been studied in the different climatic and edaphic conditions. Tulip cultivars have prolong flowering periods that their flowering duration can match with Nowruz are an apocopate option to use in the urban landscape of Mashhad. One of the methods to estimate the vegetative and ornamental traits in the ornamental plants is prediction models using bulbous dimensions with other plant part dimensions or combinations of them. In the current paper the study of the date of flowering and its duration in the several cultivars was investigated. On the other hand an attempt has been made to establish a best method for estimation of some ornamental traits in the tulip flower.
Materials and Methods: In the first part of the examination, six plots including six cultivated cultivars of tulip with area of 5 m2 were prepared. Weight and diameter of bulbs were measured before planting and ornamental traits include height of flower stem, length and width of flower. Data from nearly 100 plants for each cultivar were recorded. Regression analyses of WB, DB, WB×DB, WB/DB, WB2×DB2 and WB2/DB2 versus height of flower stem, length and width of flower were done. . Among tested models (linear, polynomial, power, logarithmic and exponential) the models with highest R2 values can be used for estimating of the mentioned ornamental traits. The correlation coefficients and also constants (a, b and c) were reported. In the other part of the examination, 23 cultivars of tulip in 15 plots with area of 20 m2 were planted in the various parts of Mashhad. Flowering date and also the duration of flowering from nearly 50 plants for each cultivar were recorded.
Results: Results showed that the highest correlation between dimensions of bulbs (weight and diameter) with height of flower stem (R2=0.88) was observed in weight of bulbs. Among of the tested models , the highest coefficient of correlation was obtained in polynomial equation. The calculated correlation between weight and diameter of bulbs with length and width of flower were low. In the Royal virgin cultivar, flower length with the bulb weight and also multiple of the bulb weight and diameter significantly showed a positive correlation (R2=0.88 and R2=0.81). In the other part of the current study, results indicated that the most of studied cultivars showed different flowering dates and durations. According to the results, the most early-flowering cultivars obtained from Copex, Yokohama, Happy generation and Apricot beauty. The most lately-flowering cultivar of tulip in the present study was observed in Spring green.
Discussion: In the first part of the study, the developed models including WB, WB×DB and WB2×DB2 that have the highest R2 levels in comparison with other models can be applied to estimate height of flower stem in most of tulip cultivars. In the second part of the study, among of the 23 cultivars, only Apricot fox, Pretty lady, Happy generation and Yokohama are advisable to plant in the urban landscape in Mashhad in order to have flower during the Nowruz.
Reyhane Setayesh; Mohammad Kafi; Jafar Nabati
Abstract
Introduction: The population growth and water requirement for domestic consumption, industry, agriculture and urban development in Mashhad megacity, increase pressures on freshwater resources. Therefore, planning for water use optimization is necessary. The new allocation of water resources for landscape ...
Read More
Introduction: The population growth and water requirement for domestic consumption, industry, agriculture and urban development in Mashhad megacity, increase pressures on freshwater resources. Therefore, planning for water use optimization is necessary. The new allocation of water resources for landscape greenish, especially in arid and semi-arid is difficult. Therefore, water allocation to landscape is valuable and should be used efficiently. According to water resource limitation, using drought-tolerant plant species and determine threshold of drought tolerance in landscape can improve water use management. Plants that naturally survive in your area are the ones best adapted to your soil, climate and rainfall. By selecting plants that either avoid or tolerate dry conditions, a beautiful, thriving landscape can be made possible. Drought-tolerant plants survive long periods of drought by storing water internally or by developing extensive root systems that sink deep into the soil. Many drought-tolerant plants have additional protection through a waxy coating that reduces evaporation or hairs on the leaf surface that reflect some of the light, insulating the plant. Most drought-tolerant plants use several of these features to survive on low amounts of precipitation. Japanese barberry is a compact woody deciduous shrub with arching branches. Leaf colours include green, bluish-green to dark red and purple. B. thunbergii's progress in the United States has, to date, been held in check to the south by, probably, its need for cold winter temperatures for stratification of the seeds, and to the west by, probably, drought conditions. Although very drought tolerant once established, a very dry terrain would tend to discourage its incursion. Rugged, adaptable, no serious problems or pests, easy to maintain, transplants readily, shade and drought tolerant, deer resistant is typical ad copy found at any site offering this shrub of colourful fall foliage. In this regard, drought stress tolerance thresholds of ornamental barberry plant in Mashhad landscape were evaluated.
Materials and Methods: In order to determine the qualitative and quantitative drought stress tolerance thresholds of ornamental barberry (Berberis thunbergii) plant an experiment was conducted basis on randomized complete block design with three replications in Plant Production Complex of Mashhad Municipality. Treatments included; 100, 80, 60, 40, and 20% of culculated water requirements based on evaporation pan data. Two years old plants with similar size were transplanted from pots to field in 16 March 2012. Treatments were applied after establishment in 28 April and sampling was arranged in 6 August, 23 August, 6 September, and 7 October. During the growing season, the evaporation level was daily measured from pan Class A. In each sampling two plants sampled randomly from each plot for measuring the plant height, highest branches, number of branches, fresh and dry weight, dry mater percentage, irrigation water use index and freshness index.
Results and Discussion: Results showed that with increasing severity of drought stress plant height of barberry reduced significantly, but there were no significant difference between 100 and 80% of water requirement treatments. The highest branches reduced by diminishing water application volume but there were no significant difference among 100, 80 and 60% of water requirement application. The maximum of branch number was observed at 60 percent water requirement, however, there were no significant difference between 100 and 60% of water requirement treatments. The number of branches in 60% was 26% lower than 80% of water requirement. Therefore, application of 60% water requirement with 23 branches per plant produced highest branch number. The highest and lowest plant fresh weight was measured in 100% and 20% water requirement application, respectively. Application of 60% of water requirement produced statistically on the same biomass production of 100% of water requirement application. The lowest freshness index was observed in 20 and 40% of water requirement, but there were no significant difference among 60, 80 and 100% of water requirement applications.
Conclusion: Generally, results showed that ornamental barberry plant is a drought resistant plant and it can be alive by only 20% of its water requirement application, but for having freshness ornamental barberry in urban landscape, at least 60% of its water requirement should be applied. Based on the present results, water application of ornamental barberry could be reduced to 60% of calculated water requirement. It could be saved water application of barberry up to 4400 m-3.ha-1 in a growing season in Mashhad condition.
Tahereh Bahrami; Vahid Rouhi; Abdolrahman Mohammadkhani; Saeid Reezi
Abstract
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green ...
Read More
Introduction: Green roof is one of the newest phenomenons in architecture and urbanism that refers to the sustainable development concepts and it will be usable for increasing landscape design, improving quality of the environment and reduction in energy consumption. Ensure of existing adequate green landscape in urban areas and improving access to natural areas surrounding the cities can help to offset negative effects of urban life. The use of green roof technology in cities is one of advanced techniques of green landscape. A green or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium on top view of buildings. Green roof layers that considered for roof side consist of protection layer, drainage layer, growing medium and plant layer. Medium layer is the medium culture of green roof that plants are begins to grow in it. This space should enable to save enough minerals and water for conserve of green-roof plants. All kinds of plants can growth on the green roof, but there are some constraints in creative of design because of roots dimension, plant canopy, necessary volume of soil, suitable direction to light, good weather, weight of designed structures, budget of repairing and keeping.
Materials and Methods: To evaluate the effect of some culture medium on water consumption, vegetative and reproductive traits of Gazania (Gazania hybrida) in condition of green roof a factorial experiment was conducted based on a completely randomized design with nine treatments and three replications in 2014. Treatments were three levels of vermicompost (zero, 5%, and 10%) and rice hull (zero, 7, and 14%). Seedlings of plants cultivated in the media mixture of coco peat 15%, perlite 15%, leaf 10%, manure 10%, and filed soil 50%. The container had 60 × 60 ×25 cm dimensions that placed on the roof of greenhouse building with four meters height. The measured traits was number, average, and diameter of flower, stem diameter, plant height and diameter, crown diameter, the number of produced seedlings, root volume and chlorophyll. The weight of different mediums measured for medium of green roof suitable texture. In addition, in the certain period (three months), water consumption calculated with considering of daily evaporate and transpiration for each of medium. Data analyzed using SAS and MSTAT-C statistical program and means compared using a Duncan test (p < 0.05).
Results and Discussion: The results showed that vermicompost treatments had significant effects on the number and diameter of flowers and stem height of the plant, but had no effect on plant's stem diameter. Based on the results, different amounts of vermicompost increased the flower number and average per day and also the plant length. The largest flower number (88.33) and average (6.3) per day and the plant length (14.52) were observed in 10% vermicompost treatment and the lowest observed in control treatment. In addition, rice hull treatments had significant effect on flower number and diameter. However, rich hull had not any significant effect on stem number and diameter. Mean comparisons showed the highest and lowest flower number (82.4 and 82.1), mean flower number per day (5.88 and 5.86) in 14% and 7% rice hull treatments, respectively. Also, the highest flower diameter was related to 14% rice hull treatments. Result of analysis variance table showed significant effect on flower crown weight, length and diameter and root volume. Rice hull treatments also had significant effect on flower crown number and diameter and root volume. In this study, combination of 10% vermicompost with %7 rice hull treatment, have the greatest impact on the latedmost traits and reducing water consumption on green roof. As results showed water consumption in the certain period (three months), the lowest consumption belonged to 14% rice hull without vermicompost that had lowest water consumption in comparison with reference. In addition, the heaviest weight of different mediums was related to control and the lightest medium was belonged to 5%, vermicompost in combination with 14% rice hull.
Conclusion: The vermicompost and rice hull as bio-fertilizers not only increased structure, physical and chemical condition of medium but also increased nutrition and reduced water consumption. Vermicompost and rice hull both improved the most flower traits on green roof and reduced water consumption and weight of different mediums. Therefore, the vermicompost and rice hull (14% and 7%) combined with soil mixture can be used as a culture medium in green roofs.
Azizollah khandan Mirkohi; Nakisa Baie; Ebrahim Hadavi
Abstract
Introduction: Regular watering and application of nitrogenous fertilizers in turf-grasses is a conventional operation, especially in warm and dry or semi-dry climates, which arecommon in many parts of Iran. Nitrogen is a mobile nutrient in soil or substrates, especially in the form of nitrate. Nitrate ...
Read More
Introduction: Regular watering and application of nitrogenous fertilizers in turf-grasses is a conventional operation, especially in warm and dry or semi-dry climates, which arecommon in many parts of Iran. Nitrogen is a mobile nutrient in soil or substrates, especially in the form of nitrate. Nitrate leaching due to the regular watering has been reported in many sources. The managing nitrogen application can help to minimize the loss of this element regarding the ability of soil-plant system. Attempts have been made to control the growth of turf-grass using various types of chemicals, but similar to the concerns associated with the consumption of nitrogenous fertilizers, this is also concerned with environmental pollutions. Therefore, the growth of turf grasses can be controlled without using chemicals and by limiting the use of nitrogen and managing the irrigation.The purposes of this study were to limit the application of nitrogen in order to control vegetative growth of the turf grass and maintain its visual quality, and to manage irrigation in order to preserve this mobile element (nitrogen) near the root system and prevent its leaching.
Materials and Methods:The effects of reduced water and nitrogen supply on the control of vegetative growth of turf grasses, commonly named as sport turf,were evaluated.Therefore, an experiment was designed in a factorial based on randomized complete block design with three replications. Mixed seeds of sport turf grass were planted with the density of 40 g m-2in boxes, which placed atthe depth of30 cm and leveled with sandy loam soil in mid-spring. Nitrogen was applied as ammonium nitrate via fertigation in five levels of 0, 0.5, 1, 1.5 and 2 mg m-2 month-1, andirrigation treatments performed at four levels of 100%, 80%, 60 % and 40% of field capacity. Watering was done every two days for 5 months during the warm season of the year after the first mowing on June 2013. Some traits such as plant height, fresh and dry weight, density, color and quality, and chlorophyll and proline contents were evaluated during growth period or at the end of the experiment.The data were subjected toananalysis of variance (SAS, 1996),and differences among the treatments were compared using Duncan’s multiple range test at 95% probability level.
Results and Discussion: The results showed that decreasein nitrogen level up to 0.5 gdid not significantly change density index,,whilethe index showed a significant reduction in treatment containing zero nitrogen application and the lowest irrigation regime (40% of the field capacity).Quality and color of the turf grass had no significant correlation with nitrogen treatment, while the factor was significantly decreased when irrigation regime of 40% of the field capacity was applied. It was determined that although color of the turf grass was greener with lower levels of water,a good color was found with high level of non-organic fertilizer at the time that the amount of nitrogen leaching was also limited. Therefore, regardless of the different nitrogen levels applied, quality and color indiceswerethe lowest when irrigation at 40% of field capacity was applied. Limiting the level of nitrogen up to 0.5 gramand irrigation up to 60% of field capacity was desirable to control and reduce the height of turf grass. Reduction in water level up to 80% of field capacity caused no significant changes in fresh weight, but a significant decreasewas resulted with the reduction of water consumption up to 60% of field capacity. The maximum fresh weight was found with 1.5 grams nitrogen. However, reducing nitrogen level upto 0.5 gramdid not bring about significant changes in this trait. Dry weight also followed the same pattern as fresh weight. Although reduction in the level of applied nitrogen did not reduce the height, it caused a significant reduction in fresh and dry weight of the turf grass. The highest chlorophyll content was found when 2 grams of nitrogen and irrigation regime of 40% of field capacity were used. Regardless of the nitrogen level, the highest chlorophyll content was found in irrigation of 40% of field capacity,while the lowest amount was observed in the treatment containing irrigation at100 and 80% of field capacity. Plants were dark green in 40% of field capacity. Proline content showedincreasealong with the decrease inirrigation as well as nitrogen levels.
Conclusion:Plant height, fresh and dry weight, chlorophyll and proline contents were significantly affected by limiting the use of nitrogen and water, but density and quality indices were not significantly influenced. Regardless of the nitrogen levels applied, quality and color traits were the lowest only in irrigation regime of 40% of field capacity. Therefore, it was concluded that reduction of nitrogen supply to 1 mg m-2 month-1and irrigation regime up to 60% of field capacity could result in thereduction ofvegetative growth of turf grass, while quality traits were not affected negatively.
Hamed Alipour; Ali Nikbakht; Nematollah Etemadi; Farshid Nourbakhsh; Farhad Rejali
Abstract
Introduction: Drought stress is one of the most important abiotic stresses which significantly reduce yield and growth of most of plants. Plane tree is one of the important trees planted in the urban landscapes of Iran. One of the major limiting factors of landscapes development is providing water for ...
Read More
Introduction: Drought stress is one of the most important abiotic stresses which significantly reduce yield and growth of most of plants. Plane tree is one of the important trees planted in the urban landscapes of Iran. One of the major limiting factors of landscapes development is providing water for plants. Deficit irrigation is a desirable method for saving water use in water deficit conditions and ultimately reducing necessary cost of water securement to landscape plants. Moreover, inoculation of plant root with mycorrhizal fungi can be considered as a method to reduce water demand of plants. In addition, mycorrhiza can increase plant resistance against environmental stress, such as salinity, temperature stress, drought stress and etc. Mycorrhiza can improve drought stress through enhancing water uptake as result of extra radical hyphae and stomatal regulation or transpiration. Increasing P concentration by mycorrhiza inoculation can be another mechansim for drought resistance in plants. The purpose of the present study was to evaluate two Glomus species in combination together on plane tree under water deficit for growth characteristics and nutrients uptake such as P, Fe and Zn concentration.
Materials and Methods: This outdoor experiment was conducted at - Isfahan University of Technology, Isfahan, Iran, with average temperature 14.2 ºC and 27.9 ºC night/day, respectively and relative humidity 35-70% between Mar and Aug 2012 and repeated under the same condition in 2013. This experiment was carried out to evaluate the effect of inoculation with mycorrhizal fungus on plane saplings response to different applicable water levels (50 and 100% of water needs) based on a completely randomized design with 3 replications. The treatments were control (without fertilizer), Germans peat + fertilizer, Germans peat + fertilizer + mycorrhiza in 50% of field capacity and Germans peat + fertilizer + mycorrhizain 100% of field capacity. The Mycorrhiza fungi (mycorrhizal root, soil containing spore and extra radical mycelium) were obtained from Institute of Soil and Water Research (Tehran, Iran). There were inoculums treatments: two AM fungus inoculums (G. intraradices and G. mosseae) with combination of both. The inoculated dosage was approximately 80 spores g-1 for G. intraradices and 80 spores g-1 for G. mosseae, calculated by microscope before the experiment. Plants were irrigated daily base of 100% FC after the confidence of establishing plants about 2 months and then differential irrigations were applied. The amount of 100 and 50% ET was applied for full irrigation, moderate and serve deficit irrigation, respectively. To monitor the soil water content, tensiometry probe tubes were inserted into the soil in control pot around the root. Irrigation was performed whenever 40% of the available water was consumed. In order to calculate the amount of water necessary to bring each soil to FC, soil samples were collected and the water content determined by drying. Photosynthesis rate was measured with a LCI portable photosynthesis system. Soluble sugars measured according to Phenol–Sulfuric Acid method. Extraction of the Leaf chlorophyll pigments using with 100% acetone. The extraction of P, K, Fe, and Zn from the plant tissue material was performed by using dry ashing method. The mean data of two years were analyzed with SAS 9.1 software, the means were compared for significance by the least significant difference (LSD) test at P < 0.05.
Results and Discussion: Mycorrhiza inoculation significantly increased fresh and dry weight, chlorophyll content, total sugar, leaf area, photosynthesis rate and P and K concentration as compared to control. As compared to the 100 and 50% FC, total chlorophyll, fresh and dry weight and P concentration significantly was increased in 100% FC (Table 4 & 5). The results showed that inoculation of plants with mycorrhizal fungus significantly increased most growth parameters including leaf area, chlorophyll content and leaf fresh and dry weight of plane saplings. Phosphorus content significantly increased in inoculated plants as compared to non-inoculated plants. It is recommended that in dry regions and water shortage conditions, the deficit irrigation method accompanied with mycorrhizal fungus inoculation to save water.
Conclusion: Our data showed that mycorrhiza inoculations increased most growth parameters including leaf area, chlorophyll content and leaf fresh and dry weight of plane saplings. In conclusion, mycorrhiza inoculations can increase plant tolerance against drought stress by increasing phosphorus concentration, chlorophyll content, and photosynthesis rate. Generally, results of this study revealed that inoculation of plane tress with mycorrhizal fungi, improved plant growth under stress conditions through its positive influence on nutrients uptake, chlorophyll content and other growth parameters.