Ornamental plants
Maryam Abaspour; H. Bayat; Mohmmad Hossein Aminifard; Farid Moradinezhad
Abstract
Introduction
Sage (Salvia spp.), which belongs to the mint family (Lamiaceae), is considered one of the largest and most important genera in terms of aromatic and medicinal properties. This diverse genus includes approximately 900 species, each with unique characteristics, and is mainly native to the ...
Read More
Introduction
Sage (Salvia spp.), which belongs to the mint family (Lamiaceae), is considered one of the largest and most important genera in terms of aromatic and medicinal properties. This diverse genus includes approximately 900 species, each with unique characteristics, and is mainly native to the northern Mediterranean and North African regions. It is used as a traditional medicine in the treatment of many diseases and as a seasoning and flavoring in the food industry. Sage is a remarkable plant that is widely known for its numerous medicinal properties, including antispasmodic, antiseptic and sedative effects, which makes it very valuable in traditional and modern medicine. In addition to its therapeutic benefits, this aromatic plant usually reaches a height of 60 cm. The plant is suitable for cultivation in green spaces and parks due to its ornamental properties and resistance to environmental stresses. Numerous features, including the diversity of the native Iranian sage genus, aesthetic aspects, and high adaptability to environmental stresses such as drought, increase the potential of these plants for use in urban green spaces, and their widespread use can help create sustainable green spaces. Considering the beauty of the leaves and flowers of these plants, the presence of abundant fragrance during the flowering stage, the lack of need for special conditions for cultivation, and their resistance to adverse conditions, it seems that these plants are very suitable for cultivation in green spaces for ornamental purposes. Most previous research on sage has focused on the medicinal value and the increase in its medicinal compounds and secondary metabolites, and the ornamental potential of the plant for use in green spaces has not been considered. Considering the diversity of this genus in Iran and its beauty, its use in urban green spaces as a native plant compatible with the country's climatic conditions can be investigated. Therefore, the present study aimed to investigate the vegetative and ornamental traits of different native and imported sage species, as well as the potential of this plant for ornamental uses in the climatic conditions of Birjand.
Material and methods
This study was conducted on 14 genotypes of medicinal sage (Salvia spp.) in the research farm and greenhouse of the Faculty of Agriculture, University of Birjand during 2022-2024 in a randomized complete block design with three replications. During the plant growth period, vegetative traits including plant height, plant width and number of leaves were examined every 15 days. At the full flowering stage, peduncle length, number of peduncle, number of florets in main and axillary inflorescences, number of axillary inflorescence peduncles, inflorescence diameter, peduncle diameter, diameter and length of floret, length of main and axillary inflorescence, interfloral distance of florets, number of days to flowering, and flower durability on the plant were measured.
Results and discussion
The results of variance analysis showed that there was a significant difference between different sage species for all studied traits at the 1% probability level. The highest plant height (32.93 cm), leaf width (63.80 cm), and number of leaves (337) were obtained from the species Salvia nemorosa SA036, Salvia sclarea var turkestanica SA060 and Salvia officinalis, respectively. In addition, the lowest plant height (3.20 cm) was obtained from Salvia chorassanica, leaf width (6.05 cm) and number of leaves (6) from the species Salvia virgata. In terms of reproductive traits, the highest peduncle length (49.15 cm), main inflorescence length (34.10 cm) and number of axillary inflorescence (12) were observed in the Salvia sclarea SA058 species. The lowest flower durability on the plant (25 days) was observed in the Salvia chorassanica species, and the other species had the highest flower persistence and no significant difference was observed between them. The highest (23) and lowest (2) number of peduncle were observed in the Salvia reuterina and Salvia firgida species, respectively. The highest inflorescence diameter (51.81 mm) and peduncle diameter (4.45 mm) were obtained from Salvia reuterina and Salvia sclarea var turkestanica SA060, respectively. The results of this study showed that there was high genetic diversity in terms of morphological traits among different sage species, which have the potential to be used as ornamental plants in urban green spaces.
Conclusion
The results of this study showed that native and imported sage species have significant diversity in terms of vegetative and ornamental traits, indicating the high genetic potential of this genus. Some imported sage species, especially in terms of ornamental characteristics, perform better than native species. These species show significant potential for cultivation in urban green spaces, making them very valuable for landscaping purposes. By intelligently selecting and including these species in urban planning, a significant contribution can be made in increasing and maintaining the aesthetic appeal of urban environments. Given the diversity of sage species in the country, it is essential to examine this diversity and use it in breeding programs for ornamental purposes and cultivation in urban green spaces.
Ornamental plants
rasoul abaszadeh faruji; abdollah hatam zadeh; Ahmad Sharifi; Mahdiyeh Kharrazi
Abstract
Introduction
Light is recognized as a vital factor for plant growth and development. Plants convert light energy into chemical energy through photosynthesis, which is then used for growth and development. Quality, intensity, and photoperiod are among the factors that directly affect plant growth and ...
Read More
Introduction
Light is recognized as a vital factor for plant growth and development. Plants convert light energy into chemical energy through photosynthesis, which is then used for growth and development. Quality, intensity, and photoperiod are among the factors that directly affect plant growth and development processes. In recent years, Light-Emitting Diode (LED) technology has gained significant popularity in agriculture due to its numerous advantages over traditional light sources. These advantages include the ability to produce various light spectra, low energy consumption, long lifespan, and reduced heat emission. These characteristics have made LEDs an ideal light source for cultivating plants in controlled environments such as greenhouses and growth chambers. The primary objective of this study was to investigate the effects of different LED light qualities on the morphological, physiological, and germination traits of marigold (Tagetes erecta) seeds. Given the importance of light in plant growth and the benefits of LED technology, this study can provide valuable insights for improving crop cultivation and production.
Materials and Methods
This experiment was conducted in the Biotechnology Laboratory of Horticultural Plants in the Academic Center for Education, Culture and Research of Khorasan Razavi. F1 hybrid seeds were used in this study. The experimental treatments consisted of five light qualities: white light (100%), blue light (100%), red light (100%), 30% blue light + 70% red light, and 70% blue light + 30% red light. All treatments were subjected to a 16-hour light and 8-hour dark photoperiod using LED grow lights. The photosynthetic photon flux density (PPFD) was maintained at a constant 100 μmol.m⁻².s⁻¹ for all light treatments. Seed germination parameters (seed germination percentage, mean germination time, germination rate, radicle length, plumule length, lateral roots number, plumule fresh weight, radicle fresh weight, plumule dry weight and radicle dry) were initially measured in Petri dishes under the growth panels. Subsequently, seeds were sown and grown under the growth panels, and physiological and morphological parameters including plant height, first internode length, stem diameter, node number, leaf area, leaf length, leaf number, lateral shoot number, shoot fresh weight, shoot dry weight, shoot fresh/dry weight ratio, root fresh weight, root dry weight, root fresh/dry weight ratio, dry matter, root length, electrolyte leakage, relative leaf water content and chlorophyll content were measured every 15 days for a total of four measurements.
Results and Discussion
Seed germination indices showed that the lowest mean germination time, highest germination rate, longest radicle length, hypocotyl length, number of lateral roots, and fresh weight of radicles were observed under 100% red light treatment, followed by the 70% red + 30% blue light treatment. The application of 100% red light improved germination rate, radicle length, hypocotyl length, number of lateral roots, and fresh weight of radicles by approximately 14%, 29%, 48%, 100%, and 67%, respectively, compared to the control. Plants grown under 100% red light exhibited the greatest plant height at both the beginning and end of the growth period. At the end of the growth stage (75 days after sowing), plants under 100% red light showed increases of approximately 37%, 6%, 33%, and 31% in stem diameter, length of the largest compound leaf, number of leaves, and number of branches, respectively, compared to the white light treatment at the same growth stage. Additionally, the fresh and dry weights of plants increased by approximately 56% and 9%, respectively, compared to the control at the same growth stage. A study of the fresh and dry weights of roots showed that the application of 100% red light increased these two indices by nearly 3 times compared to the control. The lowest fresh and dry root weights were observed under 100% blue light treatment, followed by the 30% red + 70% blue light treatment. Furthermore, plants grown under 100% red light exhibited higher relative water content and lower electrolyte leakage in leaves compared to plants grown under other light treatments.
Conclusions
The research findings indicated that the application of light-emitting diodes (LEDs) with various light qualities enhanced the growth conditions of Tagetes erecta Antigua orange. Comparisons among the light treatments showed that application of 100% red light resulted in increased germination percentage and rate in marigold seeds. Furthermore, the application of red light under controlled conditions led to an increase in plant growth indices compared to other experimental treatments. Therefore, application of red light at different growth stages of maigold under controlled conditions is recommended.
Azizollah Khandan Mirkohi; Seyyedeh Razieh Waeez Mousavi; Ahmad Khalighi; Rouhangiz Naderi
Abstract
Introduction: Cultivation of ornamental plants in terrariums is common, but the use of flowering plants in such environment is difficult and rarely seen. Common geranium (Pelargonium hortorum L.H.) is the most well-known potted and garden plant in the top of 25 popular world's market rankings. Today, ...
Read More
Introduction: Cultivation of ornamental plants in terrariums is common, but the use of flowering plants in such environment is difficult and rarely seen. Common geranium (Pelargonium hortorum L.H.) is the most well-known potted and garden plant in the top of 25 popular world's market rankings. Today, one of the main goals of commercial producers is the production of the uniform plants in terms of morphological traits such as uniformity in the height that needs some management. To achieve this objective plant genetic potential, managing the growth and environmental factors, restrictions on root environment, water and nutrition to a level that does not affect the quality as well as application of chemical plant growth retardants (PGRs) could be considered. Paclobutrazol (PBZ) commercially known as Bonzi and chlromequat chloride (CCC) known as cycocel are commonly used to control the height of some pot plants. Additionally, Benzyladenine (BA) as a synthetic cytokinin can influence the growth characters of plants. This experiment conducted to evaluate the effect of paclobutrazol, cycocel and benzyladenine on the growth and flowering of geranium as a flowering terrarium plant.
Materials and Methods: The effect of PBZ, CCC and BA evaluated as a factorial experiment based on CRD on the growth and flowering of geranium (Pelargonium hortorum L.H. Bailey ‘Horizon’) as terrarium plant. At first, geranium seeds planted in tray cells as plugs filled by sieved black peat to below 2 mm in early autumn, Oct. 2015. Seedlings were grown in a greenhouse conditions with an average day/night temperatures of 25/20 ± 2 °C, nourished with 1:2 ratio diluted Hoagland nutrient solution as irrigation demand, until 2-4 leaves stage then transferred into terrarium containers (with 20 cm of middle diameter and 15 cm of height). Inside container relative air humidity was about 75±5% and growing environment light intensity (PPF) was about 500 µmole m-2S-1. Irrigation and nutrition also applied at seedling stage in terrarium. Terrarium glass container totally filled to a quarter of volume considering a drainage layer of gravel, activated charcoal, a layer of substrate barrier (plastic net), potting soil containing of 20 vol.% sieved field loam soil, 10 vol.% of fine perlite and 70 vol.% of sieved black peat. PBZ at the levels of 0, 25 and 50 ppm and CCC at the levels of 0, 1000 and 2000 ppm applied one month after transplanting (Feb. 2015) and BA treatment for flowering management applied at the levels of 0, 50 and 100 ppm four months after transplanting (May 2016). Growth and flowering characters evaluated thoroughly while root and shoot fresh and dry weight, photosynthetic pigments of chlorophyll, carotenoids, and anthocyanin index assessed at the end of the experiment.
Results and Discussion: Both growth retardants PBZ and CCC led to a significant reduction in plant height in high concentrations. Thus, the effect of PGRs on plant height was significant, while the effect of BA and its interactions by PGRs on this trait was not considerable. Effective treatments on this trait were PBZ in concentration of 50 ppm and then CCC in 2000 ppm. In particular, the use of these concentrations without BA treatment led to the shortest plants. Comparison of plants cultivated in the pot and terrarium conditions showed that the growth conditions had a considerable and significant impact on plant height and growth. Stem diameter, number of leaves and leaf area significantly reduced by PBZ compared to the control, but CCC did not show a significant effect on these traits. Smaller stem diameter occurred through 25 ppm of PBZ together with 50 ppm of BA. Application of PBZ especially at 25 ppm resulted in a significantly reduced number of plant leaves and leaf area compared to the control and application of CCC. Application of CCC at the level of 2000 ppm combined with BA of 50 ppm caused to a significant increase of leaf area compared to the control. Results on the number of lateral branches showed that application of PGRs had no effect on this character, while restriction of growth in terrarium conditions led to decrease in the number of lateral branches. Number of lateral branches raised by application of BA and CCC, while less number of branches observed with PBZ treatments especially at the level of 25 ppm. Chlorophyll and anthocyanin content of leaves decreased by both retardants. Days to flowering shortened by PBZ treatment of 50 ppm and slightly by CCC treatment of 1000 ppm in terrarium conditions. In general, flowering process accelerated via these treatments, while PBZ of 25 ppm and CCC of 2000 ppm delayed the flowering of plants compared to the control. The acceleration effect of 50 ppm PBZ was superior to the effect of 1000 ppm of CCC. The effect of BA on flowering time was insignificant despite of initial prospect. Finally, the photosynthetic pigments, leaf area and stem diameter increased because of BA, while flowering characters not influenced by means of BA. In general, 50 ppm of PBZ and without BA treatment was able to improve production characters of geranium plants in terrarium conditions.
Conclusions: The goal of this research was managing the growth and flowering of geranium in the restricted terrarium conditions by PGRs. It was found that treatment of plants by 50 ppm of PBZ could properly control the plant height and whereas positively accelerated flowering without and negative side effects on the plant performance. It seems that a good hormonal balance performed by this concentration of PBZ compared to CCC and BA. Early flowering is a positive quality trait for the most flowering ornamental plants. However, BA application itself and in interaction with CCC could enhance the photosynthetic pigment contents and thus improved the growth characters but it could not influence flowering traits even though delayed the flowering, significantly. Restriction of the root area via planting in terrarium could considerably limit the vegetative growth characters and delayed the flowering compared to the potted plants.
Esmaeil Chamani; Marziyeh Ghamari; Mahdi Mohoboldini; Alireza Ghanbari; Hamid Reza Heydari
Abstract
Introduction: Crown imperial (Fritillariaimperialis L.) is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional ...
Read More
Introduction: Crown imperial (Fritillariaimperialis L.) is an ornamental and medicinal plant native to mountainous regions of Iran. This plant genetic resources is in danger of extinction, because of grazing livestock and pest outbreaks. However, due to slow reproduction in natural conditions and traditional multiplication methods such as scaling and Bulb division, many species of this genus are endangered. Using of biotechnology, namely in vitro plant propagation, is a solution to the problems of reproduction of rare and endangered plant species with difficult propagation and mass production of valuable genotypes. Therefore, micropropagation of F. imperialis through in vitro regeneration is essential for conservation and commercial production.
Material and Methods: The bulbs of F. imperialis in dormancy stage obtained from Ilam mountainous regions in Iran and theywere placed in wet vermiculite at 4 °C for 4-6 weeks. Then, Bulbs were surface-sterilized with 70% ethanol for 60s followed by immersion in 5% (v/v) NaOCl solution for 20min with gentle agitation, and they rinsed three times in sterile double distilled water. Explants prepared from the lower third of scales with basal plate and were placed in MS basal medium supplemented with different concentrations of NAA and 2,4-D for callus induction. Test tubes with bulb segments were maintained within 25±2°C in growth chamber at 16 hours light period by the illumination from white florescent tube light and 8 hours dark. After two months callus were transferred to MS basal medium without PGRs. Then, callus excised to 0.5 cm pieces and were transferred to MS basal medium supplemented with NAA in 0, 0.3 and 1 mg/l concentration.Three types of cytokinins with different concentrations were arranged in three seperated experiments. Thefirst experiment medium contained NAA with BA (0, 0.3, 0.5 and 1 mg/l), the second experiment NAA combined with 0, 0.1, 0.3 and 0.5 mg/l TDZ and the third experiment MS basal medium included NAA with Kin (0, 0.5, 1 and 1.5 mg/l). After three months, percentage of callogenesis, diameter of calli, percentage of regeneration, number of leaves and roots and length of leaves and roots were measured. This experiment were carried out in completely randomized design with 4 replications.
Results and Discussion: In the first experiment application of NAA and BA on in-vitro multiplication of F. imperialis were evaluated. Highest callogenesis and formation (100 %) was observed in mediums contained 0.3 mg/l NAA + 1 mg/l BA, 0.6 mg/l NAA + (0.3, 0.5 and 1 mg/l) BA. Also, callogenesis was obtained in medium contained 0.5 mg/l BA without NAA. This result showed that only in medium supplemented with 1 mg/l BA provided highest (100%) callogenesis, when NAA concentrations were low. However, high levels of NAA (0.6 mg/l) in all concentrations of BA were obtained maximum callogenesis. We concluded that NAA is essential for callogenesis and enhancing its levels can increase callogenesis. Also, application of low levels of BA (0.4 µM) in callogenesis mediums of Cynodon dactylon contained Auxins resulted in increment of embryogenetic calli formation. In the other hand, presence of BA is essential for plantlet regeneration, however NAA is not necessary. Plantlet regeneration was obtained in PGRs free medium. Statistical analysis of results showed that different concentrations of BA and NAA had significant effects on percentage of callogenesis, diameter of calli, percentage of regeneration, length of leaves and roots (P