Growing vegetables
Zahra Khalili; Fatemeh Nekounam; Taher Barzegar; Zahra Ghahremani; Maliheh Farhangpour
Abstract
Introduction: Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, which is one of the most widely cultivated and economically important vegetables in the world, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. ...
Read More
Introduction: Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family, which is one of the most widely cultivated and economically important vegetables in the world, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in scavenging reactive oxygen species (ROS), and enzyme cofactor. Ascorbic acid is antioxidant and antistress agent, and also acts as a signaling molecule in some plant physiological processes and defense mechanisms. Positive roles of such antioxidants in scavenging or chelating the free radicals and activating the natural resistance against different biotic and abiotic stresses have been reported in several fruit trees. Calcium has a vital role for normal growth and development of plants due to an important role in balancing membrane structures, increasing nutrient uptakes and activates of metabolic processes. Calcium plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. To our knowledge, however, little information is available regarding the interaction effect of ascorbic acid and calcium chloride on tomato. Thus, the aim of this study was to investigate the foliar application of ascorbic acid and calcium chloride on quality and antioxidant capacity of tomato fruit.Materials and Methods: To study the effect of foliar application of calcium chloride (Ca) and Ascorbic acid (AsA) on growth, yield and fruit quality of tomato, the field experiment was carried out from June to September 2021 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Each treatment was carried out with three replicates. Different concentrations of Ca (0, 0.3, 0.6 and 0.9 %) and AsA (0, 100, 200 and 300 mg L-1) were sprayed three times (0, 15, 30 days after full bloom). Fruits were harvested at two harvests stage (orange and red color) and transferred to the laboratory on the same day. Flesh firmness was determined with penetrometer (model Mc Cormic FT 32), using an 8 mm penetrating tip. Results were expressed in kg cm-2. The pH values of solutions were monitored with pH meter. TSS was measured in the extract obtained from three fruit of each replicate with a digital refractometer Atago PR-101 (Atago Co., Ltd., Tokyo, Japan) at 20◦C. Total ascorbic acid content was expressed as mg per 100 g of juice. Antioxidant activity was measured using the free radical scavenging activity (DPPH) and calculated according to the following formula: RSA%= 100(Ac-As)/Ac. Statistical analyses were performed with SPSS software package v. 20.0 for Windows, and means comparison were separated by Duncan’s multiple range tests at p <0.05.Results and Discussion: The results showed that fruit harvested at red color stage had the higher vitamin C, total soluble solid (TSS), total phenol, flavonoids contents and antioxidant capacity compared to fruit harvested at orange color stage. Foliar application of AsA and Ca had significantly improved tomat fruit quality. The highest value of TSS (4.9 °B), vitamin C (46.1 mg 100ml-1), total phenol and flavonoids contents and antioxidant capacity (36%) was achieved with application of 300 mg L-1 AsA and 0.9% Ca in fruit harvested at red color harvest time. The lowest value of pH and highest TA was observed in red color fruit treated with 300 mg L-1 AsA and all Ca levels. Ca had significant effect on fruit firmness, which the highest fruit firmness was obtained from 0.9% Ca. The fresh tomato is an important source of ascorbic acid for human consumption. AsA significantly increased the amount of vitamin C in the plum and sweet pepper fruits. Increasing vitamin C content in fruits after treatment with Ca could be related to inhibiting action of calcium on the activities of ascorbic acid oxidase that use ascorbate as a substrate. The results indicated that treatment of Ca produced fruits with higher firmness compared to control and other treatments. Firmness and resistance to softening can be increased by the addition of Ca, due to interaction of calcium with pectate acid in the cell wall to form calcium pectate and retarding polygalacturonase activity. Differences in the percentage of TSS content at the time of harvest indicated the AsA and Ca effects on carbohydrate accumulation in fruits, which had different potential on respiration rates and consequently storability of plants. The antioxidant activity has positive correlation with total phenolic content, flavonoids and content of ascorbic acid. Conclusion: The results of our research indicated that per-harvest foliar application of AsA and Ca improved fruit quality attributes including vitamin C, fruit firmness, TSS and antioxidant activity. These results suggest that AsA and Ca treatments, especially AsA 300 mg L-1 and Ca 0.9%, may be proposed to improve fruit quality.
Medicinal Plants
Seyyed Amir Hossein Mousavi; F. Nekounam; Taher Barzegar; Zahra Ghahremani; Jafar Nikbakht
Abstract
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as ...
Read More
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. Therefore, it has received special attention for cultivation all over the world. Increasing crop production and mitigating abiotic stresses are major challenges under extreme climatic environments and intense farming activities. Crop management strategies such as deficit irrigation can decrease soil evaporation, runoff, and plant transpiration, and increase water use efficiency (WUE) and water conservation. In addition to these practices, organic input, which includes the application of organic materials such as compost and humic substances, is an additional strategy that increases soil water retention and can potentially improve plant WUE. Water is crucial for agriculture and needs to be used effectively due to climate change and drought in Iran. For this reason, to adapt to water deficit scenarios, deficit irrigation applications are increasing in importance. Water availability is expected to be a growth limiting factor that would affect fruit yield in Physalis peruviana due to reduced flower set and elevated floral abscission rate.
Materials and Methods
In order to investigate the effect of humic acid on physiological characteristics, yield and fruit quality of Physalis peruviana under deficit irrigation conditions, a split plot experiment based on randomized complete block design with three replications was conducted during 2021. Treatments consisted arrangement of three levels of irrigation (starting irrigation at 100, 80 and 60% ETc (crop evapotranspiration)) and three levels of humic acid (0, 1.5 and 3 kg ha-1). The seeds of Physalis peruviana were sown in seedling trays contain peat moss. The seedlings were grown under normal conditions (25±2 °C/day and 20±2 °C at night with 60-65% RH). Plant height, total chlorophyll, fruit yield per plant, total soluble solid content, titratable acidity, vitamin C content and water use efficiency were measured. Statistical analyses were performed with SAS V9.3, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion
The results showed that deficit irrigation significantly reduced growth, fruit yield, vitamin C and increased water use efficiency (WUE) and Total soluble solid content of Physalis peruviana. The soil application of humic acid significantly increased total chlorophyll, fruit quality and yield, and decreased leaf electrolyte leakage under normal and deficit irrigation, thus, the deficit irrigation 60 ETc% decreased the plant height by 18.6% and the fruit yield by 22.2% compared to irrigation 100 ETc%. The maximum plant length (200.3 cm), total chlorophyll content (2.42 mg g-1FW) and fruit yield (4793.3 kg ha-1) were observed in plants treated with 3 kg ha-1 humic acid under 100% ETc irrigation. The highest value of total soluble solid (12.6 B°), antioxidant activity (90.06 %) and WUE (1.23 kg m-3) were obtained with 3 kg ha-1 soil application of humic acid under deficit irrigation 60% ETc. The application of 3 kg ha-1 humic acid under 100 and 80 %ETc irrigation increased the fruit yield by 25% and 4%, respectively, compared to the control plants (non treated with humic acid) under irrigation100 ETc% and under deficit irrigation 60 ETc%, with decreasing 11% fruit yield, water consumption was saved by 40%. Soil and crop management practices that alter plant water and nutrient availability could affect the processes of crop evapotranspiration and WUE, which can influence the yield and fruit quality by changing the internal nutrient and water balance. Incorporating organic matter within a crop growth system either as leaf spray or soil mix is a complementary strategy to improve crop growth and WUE. By inducing antioxidant enzyme activities, HS could assist plants in stomata functioning, thereby closing stomata more efficiently under drought stress, which results in plant water conservation. The reason of the difference between WUE values probably appeared due to the differences on Physalis peruviana yield. WUE showed an upward trend with an increasing in irrigation.
Conclusion
Study results suggest that soil application of humic acid with increasing vitamin C, TSS and TA, improved fruit quality. According to the results, application of 3 kg ha-1 humic acid is suggested to improve fruit yield and quality of Physalis peruviana under normal and deficit irrigation conditions.
Growing vegetables
Jaber Panahandeh; Mohammad Sedigh Zare far; Alireza Motallebi-Azar; Fariborz Zare Nahandi; Mina Amani
Abstract
IntroductionVarious methods of stress directly affected the growth and production yield of numerous plants. For example, environmental stress reduces the tomato manufacturing by the disrupting its natural metabolism, or, salinity stresses affect the it is growth and development from the germination stage ...
Read More
IntroductionVarious methods of stress directly affected the growth and production yield of numerous plants. For example, environmental stress reduces the tomato manufacturing by the disrupting its natural metabolism, or, salinity stresses affect the it is growth and development from the germination stage to the fruit ripening stage. Salinity in tomatoes by stimulating the biosynthesis of growth regulators such as ethylene and abscisic acid leads to the acceleration of the aging of the leaves. Therefore, development of different methods to induce salinity stress tolerance in plants is necessary. Some approaches were studied to develop the salinity tolerant plants such as genetic breeding, environmental improvements and usage of phytohormones and signal molecules. Salicylic acid or orthohydroxybenzoic acid plays an important role in regulating the physiological and biochemical responses of plants to stress conditions, which improves the plant's resistance to adverse environmental conditions. For instance, salicylic acid is a facile and effective way to increase plant productivity under salt stress conditions. Considering the positive effects of salicylic acid in modulating the effects of salinity, this study was conducted with the aim of investigating the effects of salicylic acid’s usage in modulating the harmful effects of salinity on some vegetative, physiological, quantitative and qualitative characteristics of two tomato cultivars of Baneh local mass and Semi Dwarf line.Materials and MethodsTo investigate the effect of salicylic acid in modulating the effects of salinity stress in tomato, a factorial experiment was conducted in the form of a randomized complete block design, with 12 treatments, in 3 replications and with a total of 36 experimental units in the hydroponic greenhouse of the Department of Horticulture, Faculty of Agriculture, and university of Tabriz. The treatments included two levels of salicylic acid (0 and 1 mM) and salinity levels (0, 35 and 70 mM NaCl) on two tomato cultivars of Baneh and Semi Dwarf.Results and DiscussionThe results showed that in Baneh and Semi Dwarf cultivars, the increase in salinity levels caused a decrease in vegetative indices, meanwhile the treatment of salicylic acid along with salt stress increased same indices. Also, salt stress caused yield reduction in both Baneh and Semi Dwarf cultivars. By examining the qualitative indicators, it was observed that titratable acidity and vitamin C increased with salt stress and salicylic acid treatment in both cultivars. In terms of physiological indicators, the amount of proline increased at different salinity levels with salicylic acid treatment, but the amount of leaf chlorophyll index decreased with the increase of same condition.ConclusionThe results of testing the effect of salicylic acid and the effects of salinity stress on vegetative, quantitative, qualitative and physiological indicators in Baneh and Semi Dwarf tomatoes showed a remarkable difference in terms of significance. In terms of vegetative traits; Plant height, leaf area index, shoot wet in Baneh and Semi Dwarf cultivars decreased with increasing salinity levels of vegetative indices, but salicylic acid treatment along with salinity stress increased same indices. Indicators such as yield, fresh weight of fruit, and percentage of dry matter of fruit showed different responses to different levels of salinity and salicylic acid treatment. The fresh weight of fruit increased with the application of salicylic acid. Also, salt stress caused an increase in the percentage of dry matter of the fruit. But salt stress caused yield reduction in both Baneh and Semi Dwarf cultivars. In terms of quality indicators; the amount of titratable acidity and vitamin C increased with salt stress and salicylic acid treatment in both cultivars. In terms of physiological indicators, the level of proline increased across various salinity levels with salicylic acid treatment. However, the leaf chlorophyll index decreased with rising salinity levels, even in the presence of salicylic acid treatment. Overall, salinity stress caused a decrease in most analyzed traits in the Baneh and Semi Dwarf cultivars. Nevertheless, it led to improvements in certain quality traits. Additionally, salicylic acid treatment enhanced the mentioned indices in most of the examined traits in both cultivars. Therefore, considering the positive effects of salicylic acid treatment on Baneh and Semi Dwarf cultivars under salinity stress conditions, its use is recommended.
Postharvest physiology
Mohammad Reza Zandi; A.H. Aboutalebi Jahromi; Behnam Behroznam; Abdolrasul Zakerin
Abstract
Introduction
Strawberry is one of the most important small fruits in the world, which is cultivated as a perennial plant in temperate regions of the world. Ripe strawberry fruit contains compounds such as protein, fiber, sugars such as fructose, glucose, sucrose, organic acids, vitamins, minerals, ...
Read More
Introduction
Strawberry is one of the most important small fruits in the world, which is cultivated as a perennial plant in temperate regions of the world. Ripe strawberry fruit contains compounds such as protein, fiber, sugars such as fructose, glucose, sucrose, organic acids, vitamins, minerals, as well as phenolic compounds and anthocyanins. The aim of this study was to investigate some hormonal treatments and magnetic field on some physiological and biochemical characteristics, shelf life and postharvest life of strawberry cv. Selva under temperature stress.
Materials and Methods
This experiment was performed as a split plot based on a completely randomized design with 3 replications. Physiological and biochemical characteristics were studied on several tissues of Selva strawberry cultivar under several different temperature treatments. The treatments were gibberellic acid at three levels of control, 50 and 100mg/l in the main plots, magnetic field at 3 levels of control, 10 and 20ms, in the subplots and temperature stress in three levels including 2, 8 and 20°C. It was done on strawberries in subplots. Healthy prepared strawberry fruits were subjected to magnetic treatments and then immersed in hormonal solutions for 2min and after drying, stored for 8 days in different refrigerators at temperatures according to research treatments. The samples were then removed from the refrigerator and transferred to a laboratory to measure various characteristics. The studied traits included: fruit weight, fruit diameter, fruit length, fruit moisture content, titratable acidity, fruit juice pH and vitamin C.
Results and Discussion
Results of analysis of variance showed that the simple and triple interactions of treatments on all studied traits were significant. Comparison of the mean triple interaction of gibberellic acid treatment × magnetic field × temperature showed that the highest amount of fruit weight (19.49g), the highest amount of fruit diameter (33.7mm), the highest fruit length (48.62mm), the highest fruit moisture (34.65%) was obtained in the treatment of 50mg/l gibberellic acid, ten Tesla magnetic field and a temperature of eight degrees Celsius. The lowest fruit weight of 10.65 g was obtained in the treatment of non-use of gibberellic acid, non-use of magnetic field and temperature of 20°C. The lowest fruit weight loss of 3.74% was obtained in the treatment of 50 mg/l gibberellic acid, 20 Tesla magnetic field and 2°C. The lowest fruit diameter of 21.52mm was obtained in the treatment of non-consumption of gibberellic acid, absence of magnetic field and temperature of 20°C. The lowest fruit length of 25.63 mm was obtained in the treatment of no gibberellic acid, no magnetic field and a temperature of 20°C. The lowest amount of titratable acidity (0.31%), the lowest pH of fruit juice (4.68) and the highest amount of vitamin C (34.92mg/100 ml) in the treatment of non-use of gibberellic acid, no use of field Magnetic and a temperature of 20°C were obtained. The lowest amount of vitamin C was equal to 20.5mg/100ml in the treatment of no use of gibberellic acid, no use of magnetic field and a temperature of 20°C.High concentrations of gibberellic acid have a beneficial effect on increasing cell division and fruit size. Gibberellic acid increases fruit size and weight due to its effect on increasing cell division in the early stages of fruit development and increasing cell size at late fruit ripening. Magnetic field also affects plant metabolic activity. Fruit volume includes fruit length. It decreases due to the magnetic field. Fruit weight showed a significant positive correlation with fruit diameter, fruit length, fruit moisture and vitamin C. In terms of the triple interaction of the research treatments, the best effective treatment for increasing the storage time of strawberries was the combined treatment of 50 mg/l gibberellic acid and ten Tesla magnetic field and a temperature of 8°C.
Conclusion
Fruit weight showed a significant positive correlation with fruit diameter, fruit height, fruit moisture and vitamin C. In terms of the triple interaction of the research treatments, the best effective treatment for increasing the storage time of strawberries was the combined treatment of 50 mg/l gibberellic acid and ten Tesla magnetic field at a temperature of 8°C.
Pomology
Masumeh Jafari; Ali Akbar Shokouhian; Esmaeil Chamani; Akbar Ghavedal
Abstract
Introduction Iron has a significant effect on the quantity and quality of agriculture products. Factors affecting the absorption of this element increase its efficiency. Meanwhile, the pH of the nutrient solution plays an important role in the absorption of iron. Iron is one of the essential elements ...
Read More
Introduction Iron has a significant effect on the quantity and quality of agriculture products. Factors affecting the absorption of this element increase its efficiency. Meanwhile, the pH of the nutrient solution plays an important role in the absorption of iron. Iron is one of the essential elements for plant growth and plays an essential role in chloroplasts. Due to iron deficiency, the activity of several enzymes such as catalase, cytochrome and oxidase and ferroxin is significantly reduced. The amount of iron in the soil is high, but plants only absorb two-capacity of soluble soil, which is negligible compared to the total iron. Soil environmental conditions affect the amount of iron by the plant, so it is difficult to control the uptake of iron by the plant. It has the highest ability to absorb iron and manganese at pH less than 6. For this reason, acetic acid was used to stabilize the pH of the solution. Acetic Acid is a polar solvent and an organic compound. The use of inexpensive organic acid and citric acid in agriculture, despite its positive effects on calcareous soils and their reasonable price is still not common in Iran. Acetic acid has a carboxylic group and therefore has all the properties of an acid.Materials and methods This experiment was carried out in the form of double split-split plot in a completely randomized block design on a strawberry plant of diamant cultivar in the research station of Mohaghegh Ardabili University during the years 2015- 2017. Factors included Acetic Acid (0, 1, 2 and %3), iron in two levels (Sequestrin 25gr and Nano 1gr) along with two levels of agricultural soap agents (0 and % 7/5) as foliar spraying. Foliar application of pH nutrient solution from the three-leaf stage of plant (mid-April) to the end of May a total of five times 10 days apart in both years. Two weeks after the last foliar application (June of the second year) plant growth indices including, total chlorophyll, number of fruits per plant, fruit pH, total acidity, soluble solids, fruit volume, fruit fresh weight, fruit dry weight, and leaf iron content and fruit yield per plant was measured.Result The results of this study showed that the three-way interaction of foliar application of Acetic Acid with iron with agricultural Soap on the average concentration of leaf iron and number of fruits at the probability level was %5 and in total chlorophyll at the %1 probability level was significant, the best result in the mentioned traits was the combination of treatment of Acetic Acid %2 with Sequestrin iron with soap Moyan (%7/5). The interaction effect of Acetic Acid and iron type on traits of fruit pH, fruit volume, fruit fresh and dry weight at %5 probability level and in yield at %1 probability level were significant. Fruit volume, fruit fresh weight and fruit dry weight and yield showed the best results due to treatment combination of %2 Acetic Acid with Sequestrin iron fertilizer. But for fruit pH trait, the best results were related to the treatment of Acetic Acid %3 on the leave of Sequestrin iron. The Interaction of the iron and agricultural Soap was significant on the amount of soluble solids at %5 probability level and the total acidity strawberries fruit was significant at %1 probability level. In the case of soluble soild and Acidity, Sequestrin iron treatment and agricultural soap had the best results. According to the results of this study, the combination %2 Acetic Acid with of iron fertilizer Sequesterin in combination with agricultural soap Moyan (%7/5) due to the reduction in leaf area tensions improves the obsorption of iron and the quantitative and quality characteristics strawberries.Conclusion Based on the findings of this research, it can be concluded that Acetic acid %2, has better result on the absorption of iron fertilizer, along with agricultural soap (% 7/5) application than other treatments and qualitative traits of strawberry fruit. In treatment %2 Acetic acid most measured traits such as total chlorophyll, leaf iron, fresh weight, fruit dry weight and yield has shown a significant increase. Acetic acid by reducing the pH of the cell sauce and increasing the activity of the reductase enzyme increase the iron solubility and easily provides the iron to the plant. Due to the pH alkalinity of most soils in Iran, the use of Acetic acid in iron nutrient solution on the absorption of iron Sequestrin in combination with % 7/5 of agricultural soap due to having a hydrophilic head and a hydrophobic with %40 to %50 increase in effective of foliar fertilizers. As a result, with more absorption it can be an advanced approach to better absorption of iron by plant and increase the quantity and quality in the product.
Growing vegetables
Reza Najafi; Taher Barzegar
Abstract
Introduction
Cauliflower is one of the world’s most important vegetable crops. The edible head of the cauliflower is called curd, which is composed of many florets formed of aborted floral meristems. Curd has various components with high nutritional value including glucosinolates, vitamin ...
Read More
Introduction
Cauliflower is one of the world’s most important vegetable crops. The edible head of the cauliflower is called curd, which is composed of many florets formed of aborted floral meristems. Curd has various components with high nutritional value including glucosinolates, vitamin A and C, phenolic compounds, and carotenoids, which exert beneficial effects on our health. Calcium is an essential macronutrient that plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. Several researches have explored the effects of calcium salts on plant growth and quality in many horticulture crops. Various studies indicate that Ca2+ reduced peroxidation of lipid, increased activity of antioxidant enzyme and improve osmotic adjustment of cell membranes. Plant roots absorb calcium from the soil solution in the form of Ca2+ ions. The mobility of calcium in plant is low, and the root uptake from fertilized soils is poorly effective in increasing the calcium content in leaves and fruits. Deficiency of Ca will appear in younger leaves and in fruits, due to its low rate of transpiration. Thence, it is necessary to have a constant supply of calcium to continue growing. The direct application of liquid source of calcium on leaves and fruits may offer an alternative solution. The efficiency of foliar application with Ca depends on the source of Ca and applied dosage. To our knowledge, however, little information is available regarding the effect of different calcium sources on cauliflower. Thus, the aim of this study was to investigate the effect of foliar spray of calcium sources on quality and antioxidant properties of cauliflower cv. Romansco.
Material and Methods
In order to evaluate the effect of different sources of calcium on antioxidant properties and quality of cauliflower cv. Romansco, the field experiment was carried out as a randomized complete block design with three replication during 2018 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Cauliflower plants (cv. Romanesco) were cultivated by applying conventional farming practice for growing in open air conditions. Different calcium sources including calcium nitrate (Ca(NO3)2, 0.5, 1 and 1.5 %), calcium chloride (CaCl2, 0.3, 0.6 and 0.9 %) and calcium lactate ( C6H10CaO6, 0.5, 1 and 1.5 g L-1) were sprayed in vegetative stage and 10 days after curd formation for 2 times onto the leaves and curd until runoff using a mechanical mist sprayer. Distilled water was used as a control. Potassium, phosphorus, total soluble content, titratable acidity, ascorbic acid content, total phenols and flavonoids, free radical scavenging activity (DPPH) were measured. Statistical analyses were performed with SPSS software package v. for Windows, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion
The results showed that foliar spray of different Ca sources significantly increased K content and decreased P content. The highest amount of K (5.6 µg mg-1DW) was achieved in CaCl 0.9% treatment. The highest value of flavonoids (0.86 and 0.85 %) was found in plants treated with CaL 1.5 g L-1 and CaCl 0.9%, respectively. In this study, also it was found that foliar spray of CaN 1.5% and CaCl 0.9% increased respectively 49.3 and 40.4% vitamin C content compared to control plants. Ca application with increasing phenolic compound and vitamin C contents, improved antioxidant capacity and the maximum antioxidant capacity (26.19%) was found in CaL 1.5 g L-1 and CaN 1.5% treatments. Application of Ca sources increased TA and TSS content. The highest TSS content (12.5 and 13.3 ºB) was achievd in CaCl 0.9% and CaL 1.5 g L-1 and the maximum TA (28.8%) was found in plant treated with CaCl 0.9%. In this regard, foliar application of high level of calcium sources was more efficient than of lower levels on cauliflower quality. Therefore, the leaf application of calcium can be effective in improving the quality of vegetables, especially cauliflower.
Conclusion
Study results suggest that spraying different Ca source improved quality and antioxidant properties of cauliflower cv. Romanesco, so that with the application of Ca salts increase K, vitamin C, phenol and flavonoids contents. Among the calcium treatments used, higher levels of all three salts of CaCl, CaN and CaL had the most influence, so these calcium treatments are recommended to improve the quality and antioxidant properties of Romanesco cultivar.
Pomology
Sara Siahmansour; Abdollah Ehtesham Nia; Asdolhossein Rezaei Nejad
Abstract
Introduction
Reduction of water available to the plant leads to many morphological, physiological and biochemical changes in plant cell and plant organs activity will be directly disrupted. In addition to the defense systems in the plant itself, there are other ways to increase plant resistance, ...
Read More
Introduction
Reduction of water available to the plant leads to many morphological, physiological and biochemical changes in plant cell and plant organs activity will be directly disrupted. In addition to the defense systems in the plant itself, there are other ways to increase plant resistance, including the use of plant growth regulators. Salicylic acid is known as one of the common compounds used for environmental stresses and an essential molecular signal in plant fluctuations in response to environmental stresses. This substance has a protective effect and improves the growth process of the plant. This combination stimulates the plant immune system by inducing transcription of a specific group of genes involved in the defense and development of systemic resistance. Physalis is a small fruit of the Solanaceae family that originates in tropical and subtropical regions of South America. This genus has 80 species in the world, of which the famous species Ph. minima L., Ph. angulate L., Ph. philadelphia L., Ph. alkekengi L., Ph. peruviana L., Ph. pubscens L., Ph. ixocarpa L., among these species, Peruviana species is considered due to its unique taste and high yield.
Material and Methods
An experiment was conducted at the Faculty of Agriculture research greenhouse of Lorestan University Khorramabad, Iran. (latitude 33◦ 29` N, longitude 48◦ 22` E, altitude 1125 m) in May 2018. The experimental design was factorial based on completely randomized design with three replications. The treatments consisted of 3 levels of deficit water stress (95, 85, and 75% field capacity) and four salicylic acid concentrations (0, 0.5, 1, and 2 mM). Physalis seedlings were grown into pots containing soil, sand, and manure. In this research, chlorophyll (Chl a, Chl b, total Chl) and carotenoid content, chlorophyll fluorescent parameters (F0, Fm, Fv, and Fv/Fm), fresh and dry weight of fruit, fruit diameter, fruit number, TSS and vitamin C, proline, leaf anthocyanin and shoot soluble sugar, fresh and dry weight of leaf, leaf area, root volume and plant height, were measured.
Results and Discussion
The results showed that the effect of deficit water stress and salicylic acid treatment on the measured traits including photosynthetic pigments, chlorophyll fluorescence, fresh, and dry weight of fruit, number of fruits, amount of vitamin C, proline, soluble sugar, fresh and dry weight of leaves, leaf area, plant height and root volume were significant. Foliar application of salicylic acid at a concentration of 2 mM under water stress under 75% of field capacity increases the concentration of photosynthetic pigments including chlorophyll a (25.69%), chlorophyll b (14.08%), total chlorophyll (6.70%), and carotenoid (7.26%) and increased chlorophyll fluorescence parameters including Fm (5.2%) and Fv (1.92%). Salicylic acid at a concentration of 1 mM had better results on quantitative and qualitative traits of fruit including a number of fruits (2.67%), fresh weight of fruit (10.61%), and dry weight of fruit (0.6%). Under stress conditions of 75% of field capacity, application of 2 mM salicylic acid reduced the concentration of proline (31.2%), soluble sugar (11.69%) and leaf anthocyanin (4.93%). Therefore, according to the results, the best levels of irrigation for breeding Physalis (Physalis pruviana L.) are 85 and 95% of field capacity, and the concentration of 2 mM salicylic acid as a natural modulator has an effective role in reducing the effects of dehydration stress. Stress significantly reduces the maximum efficiency of photosystem II (Fv/Fm). This adverse effect on Fv/Fm may be due to its role in inhibiting electron transfer, as well as destroying the reaction centers in PSII. Accumulation of proline under stress is because proline, as a compatible osmolyte, removes all types of active oxygen and protects the cell, and provides the necessary conditions for the plant to absorb water. Salicylic acid increases the chlorophyll synthesis and protects the chloroplast membrane from stress by removing destructive free radicals by stimulating the biosynthetic of the photosynthetic pigment pathway and reducing the chlorophyllas enzyme. It also prevents the ethylene formation by inhibiting of ACC- synthetase enzyme, which in turn prevents the degradation of chlorophyll. Salicylic acid regulates the various physiological processes such as plant growth and development.
Conclusion
According to the results, the application of salicylic acid under low irrigation stress, as a growth enhancer and stress modulator, showed good results and improved physiological traits such as increasing photosynthetic pigments (chlorophyll and carotenoids), Fm, Fv and maximum efficiency of photosystem II and improvement of biochemical traits (proline, soluble sugar and leaf anthocyanin) at a concentration of 2 mM and increase in fruit traits (fresh and dry weight, number of fruits, vitamin C and fruit diameter) at a concentration of 1 mM. Growth and morphological traits also showed an increase in fresh and dry leaf weight, leaf area, plant height at a concentration of 2 mM salicylic acid at low irrigation stress levels. Therefore, salicylic acid can be used to reduce the destructive effects of deficit water stress and increase the quantity and quality of fruit if the Physalis plant is grown in arid and semi-arid regions.
Pomology
Alireza Bonyanpour; Babak Jamali
Abstract
Introduction
Pomegranate (Punica granatum L.) is a nutrient dense fruit with a high health value and one of the most important Iranian fruit crop. Historical evidence reveals that the primary origin of pomegranate is Iran and that it has been spread from this region to other areas. A vast range of pomegranate ...
Read More
Introduction
Pomegranate (Punica granatum L.) is a nutrient dense fruit with a high health value and one of the most important Iranian fruit crop. Historical evidence reveals that the primary origin of pomegranate is Iran and that it has been spread from this region to other areas. A vast range of pomegranate varieties can be found in Iran; 760 original, decorative and wild ones. Pomegranate juice contains a high amount of total soluble solid (TSS), anthocyanins, polyphenolic compounds, vitamin C, sugars and proteins.Pomegranate is considered as one of the most tolerant fruit crops capable of growing under arid and semi-arid climatic conditions. Cultivar and growing region climate are the main factors determining chemical composition of pomegranate fruits; Significant differences in various fruit quality parameters such as organic acids, phenolic compounds, sugars and water-soluble vitamins have been reported in previous studies. The aim of present study was to compare and evaluate physical and biochemical characteristics of fruits and different polyphenolic compounds in juice of six commercial Iranian pomegranate cultivars.
Materials and Methods
This research was conducted in 2017 and 2018 years in a commercial orchard in Arsanjan region of Fras province. Six Iranian pomegranate cultivars included ‘Malas Yusef Khani’ (MYK), ‘Bajestani (BK), ‘Khazr Bardskan’ (KHZ), ‘Malas Dane Syah’ (MDS), ‘Rabbab’ (RB) and ‘Zard Anar Arsenjan’ (ZA) were studied. The trees were planted in randomized block design and spaced 5 and 3 m between and along the rows, respectively. The trees were grown under drip irrigation with routine cultural practices suitable for commercial fruit production. Orchard management was conducted uniformly according to optimized available recommendations (based on soil and water samples analysis) for the orchard site. Fruits were harvested randomly from orchard and some physicochemical characteristic of fruits were measured. Fruit length and fruit diameter measured by manual caliper, fruit and above ground weight was determined by digital scale. The fruit juice percentage was calculated by calculating the percentage of aril juice. TSS (Total soluble solids) expressed in Brix◦ was measured using a refractometer. The titrable acidity (TA) was determined by titration to pH 8.1 with 0.1M NaOH solution and expressed as percentage.Total anthocyanins, total polyphenols, vitamin C and anthyoxidant activity were measured spectrophotometrically. Polyphenolic compositions of juices (Gallic acid, Catechin, Caffeic acid, Chloregenic acid, p-Coumaric acid Vanilin, Trans-ferulic acid, Hesperedin and Ellagic acid) were also measured using HPLC analysis. The chromatographic analysis was carried out on Agilent Technologies 1200 series HPLC system. Chromatograms were recorded at 280 and 320 nm. Each compound was quantified by comparing its peak. Data was analyzed by SPSS software and means were compared using Duncan’s multiple range tests at 5% probability level.
Results and Discussion
Significant differences were found among studied pomegranate cultivars for various physical fruit characteristics, quality parameters and polyphenolic composition of fruit. ‘Malas Daneh Syah Yazd ’was the best in comparison to other cultivars. ‘Malas Daneh Syah Yazd’ had the highest fruit weight (332 g), fruit length (8 cm), fruit diameter (8 cm), TSS(15.77 Brix◦), anthocyanin content (26.98 mg 100 ml-1), polyphenol content (514.37 mg 100 ml-1) , ascorbic acid content (9.23 mg 100 ml-1) and antioxidant activity (52.2%). Also, the amount of polyphenols in this cultivar was relatively high. This cultivar had high amount of some polyphenol content such as cathechin (223.5 mg L-1), Hesperidin (30.55 mg L-1) and Ellagic acid (43.02 mg L-1) with no significant differences with highest amount. ‘Rabbab’ had the highest aril weight (340 mg) and moderate levels of other fruit characterestics, this cultivar had the maximum polyphenols such as gallic acid (163.1 mgL-1), catechin (264.2 mgL-1), caffeic acid (265.1 mgL-1), p-Coumaric (74.41 mgL-1) acid, vanillin (18.21 mgL-1) and ellagic acid (43.5 mgL-1). Zard anar’ pomegranate cultivar which was native to this region in terms of most biochemical properties had a low a‘mount .Therefor, among the studied pomegranate cultivars‘ Malas Dane syah’ and was the best. This cultivar had the highest fruit characteristics and polyphenol content such as ellagic acid.
Conclusion
The results of this study showed significant differences among studied pomegranate cultivars. ‘Dane syah Yazd’ had the highest physical and chemical characterestics of fruits. Previous studies showed that theses cultivars had good growth characteristics and high yield in comparison to other cultivars. Therefore, among the studied cultivars, ‘Dane syah Yazd’ is introduced as a suitable cultivar for this region. Also, ‘Rabbab’ Neyriz cultivar can be considered as a cultivar with high antioxidant properties of fruit juice due to having the highest amount of measured polyphenolic compounds, especially alginic acid.
Pomology
Mohyedin Pirkhezri
Abstract
Introduction Barberry is one of the native plants of Iran and tolerates environmental stresses, especially drought. This species can play a special role in the future development of horticulture in Iran. This species is drought tolerant and can be used in the development of rain-fed gardens. The ...
Read More
Introduction Barberry is one of the native plants of Iran and tolerates environmental stresses, especially drought. This species can play a special role in the future development of horticulture in Iran. This species is drought tolerant and can be used in the development of rain-fed gardens. The Barberry family contains 15 genera and 650 species, most of which are distributed in the temperate regions of the Northern Hemisphere. The most important genus in the barberry family is Berberis. This genus has 500 species, some of which, including Zalzalaki, Zarafshani, Khorasani, Rastkhoshe, common and Japanese barberry, exist in Iran (i.e., Berberis vulgaris, B. orthobotrys, B. crataegina, B. integerrima, and B. khorasanica, respectively). This plant is widely distributed in Iran. Various wild species of barberry are distributed in the southern and northern slopes of Alborz from Firoozkooh, Taleghaneh, Miyaneh to Amarlu of Gilan. This genus grows on large areas of the Zagros at an altitude of 1000 to 2500 meters above sea level. Iran is the largest producer of seedless barberry in the world with a cultivated area of 18341 hectares and production of 21181 tons of dried barberry. This species can play a special role in the future development of horticulture in the country and reduce the pressure on water resources, especially in rain-fed horticulture.Materials and Methods In this study, 25 genotypes were evaluated from three regions: west of Alborz province (Taleghan region), north of Alborz province (Chalus road and Khuzenkola, Arangeh, Asara to Dizin heights) and northeast of Tehran (Lavasanat). Morphological evaluation was performed according to UPOV instruction (TG 68/3). 32 quantitative and qualitative morphological and horticultural traits were evaluated according to UPOV (TG 3.68). Of which, 11 quantifiable traits including leaf length and width, fruit length and width, pedicel length, Berries per raceme, cluster length, spines length, vitamin C, TA (Titratable Acidity) and TSS (Total Soluble Solid) were analyzed.Results and Discussion The results of analysis of variance showed significant differences between genotypes for all quantative traits evaluated at the level of 1% and for the number of berries per cluster at the level of 5%. The high coefficient of variation indicates high variability for the desired trait, which allows the breeder to have more choices for selecting desired genotypes. The number of fruits per cluster with 45.55, spines length with 28.67 and titratable acid with 26.58 percent malic acid, had the highest range of changes. Qualitative traits included Foliage secondary color, Leaf curvature and Leaf margin, Leaf glossiness, Color of lower side, Fruit tip, Fruit waxiness, Foliage persistence, and Shoot color in spring among the genotypes were uniform and without variance. The lowest coefficient of variation among quantitative traits was related to Brix (7. a16 percent) and fruit length (13.14 percent). The highest number of fruits was belonged to Lavasan genotype (AD8) giving an average of 25 fruits per cluster, which was substantially different from other genotypes. The highest and lowest fruit length and width are related to Taleghan 5 (11.59 mm) and Chalus 7 (3.26 mm) genotypes, respectively. In a study, the average length and width of barberry fruit were 7.69 and 3.32 mm, respectively. Vitamin C is one of the nutritional values of fruits and has direct effects on human health. Wild barberry genotypes possessing the least vitamin C content (4.7 mg/per 100 gram) of fresh fruit (Asara I genotype) and also the fruits containing the highest values (i.e., 10.57 (Taleghan 4), 9.63 (Chalous 8) and 9.4 (Taleghan 8)) yielded more than even temperate fruits such as stone and pome fruits (The mean amount of vitamin C in apples, grapes and black cherries is 4.6, 4, 10 mg/100 g FW, respectively). This value in strawberries as an indicator plant is reported between 10 and 100 and an average of 58.8 and the value for lemons is 53 mg/100 g FW. Khayat and Mahmoud Abadi (2010) reported the amount of vitamin C in seedless barberry treated by fertilizers varied from 4 to 9 mg per 100 g of fresh fruit.The highest values of total soluble solids or Brix˚ were related to Chalus 8 genotypes with value of 24.83% and Chalus 1 with value of 23.23% and the lowest amount was related to Asara 2 genotype with 18.1%. Khayat and Mahmoud Abadi (2010) reported the total soluble solids ranged between 18.3 to 33.06 percent in seedless barberry, which is much higher than our experiment. The highest titratable acidity were observed in Taleghan 4, Taleghan 8 and Taleghan 2 genotypes, with 2.66, 2.65 and 2.41 mg/ml malic acid respectively, and the lowest titratable acid was observed in Chalus 9 genotype with 1.12 mg/ml malic acid. This value has been reported in domestic barberry is between 1.07 and 2.95. The highest mean leaf lengths were observed in Chalus cultivars 3 and 5. Among the genotypes, Taleghan 7 has the longest Pedicel length.ConclusionThe selected genotypes for breeding programs were the Oshan (AD8) genotypes with an average of 25 fruits per cluster. Regarding vitamin C content the prominent genotypes were the Taleghan 4 (10.57), Chalus 8 (9.63) and Taleghan 8 (9.4) mg/100 g F.W. The highest genotypes for total soluble solids were Chalus 8 genotypes with 24.83 and Chalus 1 with 23.23 percent.
Pomology
Azam Seyedi; Zeinab Firoozbakht; Maryam Ahmadzadeh
Abstract
Introduction: Oranges are the second most widely consumed fruit in the world after apples. The quality of citrus fruits depends not only on the appearance of the fruit size, shape, color and absence of disease and any surface damage, but also on the flavor, richness of food, vitamins, seedlessness and ...
Read More
Introduction: Oranges are the second most widely consumed fruit in the world after apples. The quality of citrus fruits depends not only on the appearance of the fruit size, shape, color and absence of disease and any surface damage, but also on the flavor, richness of food, vitamins, seedlessness and fruit aroma. The present study investigated the fruit qualitative differences between the ten orange varieties (Thomson Navel, Tarocco, Mars Early, Frost Novel, Local, Italian, Khorram Abadian, Hamlin, Morbeld and Moro Valencia) that grafted on sour orange rootstock, in the Jiroft region. The aim of this study was introducing the fruit qualitative characteristics and nutritional value of ten orange cultivars on the sour orange rootstock in climate conditions of Jiroft region, for fresh uses and processing. Also, determine the capabilities of each cultivar in antioxidant content and antioxidant capacity to introduce the properties of these cultivars to researchers in the food and pharmaceutical industries.
Materials and Methods: Fruit weight was determined by digital scales. The volume of the fruit was obtained by moving the water. The 0.1 mm caliber device was used to measure skin thickness, length and fruit diameter. To measure the thickness of the fruit skin, a cut was first separated from the middle part of the fruit and its thickness was recorded in mm. The total number of hollow and healthy seeds was counted and was recorded as seed number. The juice percentage was calculated by calculating the percentage of juice mass to fruit mass. A manual refractometer was used to measure the total soluble solids, and thesodium hydroxide titration method was used to measure the titration acidity. The flavor index or maturity index was obtained from the TSS/TA ratio and technology index was calculated by multiplying the percentage of TSS in the percentage of juice. Vitamin C measured by the iodometric method. The antioxidant activity of juice was determined based on the DPPH method. Carotenoid and chlorophyll pigments in juices and skins, were calculated using the Liechtensteiner pigmentation method. The experiment was done as a randomized complete block design in three replications. Statistical analysis of the data was performed using SAS software and means were compared using Duncan's multiple range test at 5% of probability level.
Result and Discussion: The results showed that Thomson Novell, Frost Novell and Italian cultivars had the highest freshness quality in terms of appearance characteristics (fruit weight, volume, and length, number of seeds, and fruit shape index) among the ten cultivars evaluated. All cultivars were in the physiological maturity stage and were suitable for the juice industry due to their high technology index. The range of vitamin C varied 57 - 109 mg per 100 ml juice and the range of antioxidant capacity varied 65 - 94%. Morbeld, Valencia Morocco, Frost Novell and Mars Early cultivars had higher nutritional value due to higher vitamin C, and Hamlin, local, Tarocco and Frost Navel had higher antioxidant capacity. Khorramabadian cultivar had higher carotenoid pigments in juice and skin.
Conclusion: Therefore, most of the studied cultivars had high freshness and nutritional value, but among them, Frost Novell cultivar, considering the amount of vitamin C, antioxidant capacity, technology index and appearance characteristics in the higher statistically groups and was in the lower statistical group in terms of number of seeds, therefore was selected as the best cultivar.
Ali Akbar Shokouhian; Farzad Letafatti; Bahram Fathi Achachelooee; Ali Asghari; Robab Olfatti
Abstract
Introduction: Grape is a non-climacteric fruit. Its ripening is associated with increased sugars, decreased acidity and development of color and flavor. Edible films and coatings could be used as a selective protection method to extend storage life of fruits. Edible coatings reduce the absorption amount ...
Read More
Introduction: Grape is a non-climacteric fruit. Its ripening is associated with increased sugars, decreased acidity and development of color and flavor. Edible films and coatings could be used as a selective protection method to extend storage life of fruits. Edible coatings reduce the absorption amount of brine, osmotic solution and frying oil into foods, improve mechanical properties, facilitate displacement and storage strengthen food structure, reduce spoilage and increase its shelf-life. The coatings provide a protective layer for fresh fruits and act as like as modified atmosphere packaging, change the composition of internal gases, and increase the storage-life of fruits by reducing respiration rate. Zein, is an important protein in corn seed and consists about 45 - 50% of the corn proteins. This protein contains a group of Prolamines found in the corn endosperm. Zein has unique properties for preparing edible films and coatings in comparison to other plant proteins due to its high percentage of nonpolar amino acids. Gluten is an insoluble in water protein of wheat that its disulfide bonds play an important role in the establishment of gluten films. Prepared films from wheat gluten are pure and transparent, but commercial gluten produces an opaque film due to gelatinization of its existing starch. Wheat gluten-based films have satisfactory mechanical resistance and very low oxygen permeability. Gluten can encapsulate flavors, colors, or medicines, providing slow-release materials. Bacteria, fungi, or other pest- or weed-control agents can be encapsulated in gluten granules that are then coated with oil to slow drying and maintain vitality. Materials and Methods: This study was carried out to investigate the effects of gluten and zein coatings on postharvest quality of grape cultivars in a factorial arrangement based on randomized completely design with application of corn’s Zein coating treatments at four levels (control, 2, 4 and 6% w/w) and also wheat gluten at four levels (control, 2, 4 and 6% w/w) were performed in the grape cultivars (Meshkin cultivar). Grape fruits were harvested from the gardens of Meshkin city and moved to the laboratory in the University of Mohaghegh Ardabili. Then, after applying the treatments, fruits were kept at 0° C and humidity of 90-95% in cold storage. In this study, pH, total soluble solids, total acidity, starch, anthocyanin, firmness, taste, fruit storage-life, TSS/TA, weight loss, appearance and vitamin C content of fruits were measured in 30 days after applying the treatments. Results and Discussion: The results of analysis of variance showed that using of zein as grape coating had significant effect on total soluble solids, vitamin C, taste and weight loss (p < 0.01) and on the TSS /TA attribute (p < 0.05).The use ofgluten also had a significant effect on total soluble solids, anthocyanin, weight loss and vitamin C (p < 0.01) and also on the fruit starch (p < 0.05). Interaction effect of gluten and zein treatments were significant on total soluble solids, vitamin C (p < 0.01) and fruit weight loss (p < 0.05). Based on the obtained results, the highest starch content, anthocyanin, maturity index and taste were achieved by using of gluten at 4 and 6% and the lowest amount of these substances was related to control treatment. A higher amount of anthocyanin (2.45 mg / 100 g) was retained in 6% gluten treatment, Moreover, in the fruit ripening index, the best result (41) was obtained from 6% zein treatment. The taste of the fruit was also more attractive in the 6% zein treatment without gluten consumption with a score of 8.5. Also, the best results in preservation of vitamin C (17.9), soluble solids (24 brix), fruit appearance (9.5 points) and the least weight loss of fruit (6.5%) were obtained from the combination of gluten and 6% zein treatment. Comparison of the means showed that vitamin C and soluble solids were better preserved by combined using of 4 and 6% gluten with 6 and 4% zein in storage period. These results showed that vitamin C and soluble solids had the lowest stability under control conditions. Also, the control treatment had the highest weight loss and the lowest score in the fruit preservation index. In overall, the best results in most of the studied parameters were obtained from the treatment combination of 6% gluten and zein. Conclusion: Based on the obtained results, gluten and zein coatings in comparison to control treatment at levels of 6%, had significant positive effects on post-harvest quality and storage of grapes.
Reza Najafi; Taher Barzegar; Farhang Razavi; Zahra Ghahremani
Abstract
Introduction: Eggplant (Solanum melongena L.) is an important non-climacteric fruit grown in tropical and subtropical regions. The total production in Iran and world for eggplants in 2018 were estimated 54077210 and 666838 tons, respectively, and Iran ranked fifth in the production of this product. The ...
Read More
Introduction: Eggplant (Solanum melongena L.) is an important non-climacteric fruit grown in tropical and subtropical regions. The total production in Iran and world for eggplants in 2018 were estimated 54077210 and 666838 tons, respectively, and Iran ranked fifth in the production of this product. The health-promoting attributes of eggplant are derived from the phytochemicals with good source of antioxidants (anthocyanin and phenolic acids), dietary fiber and vitamins. Fruit deterioration during long term storage is associated with appearance quality reduction, calyx discoloration, softening and pulp browning caused by the oxidation of phenolic compounds. Hydrogen Sulfide (H2S) is a flammable and colorless gas, that similar to carbon monoxide and nitric oxide, is known as third leading signaling molecule. It has been reported that H2S play an imperative role in the postharvest physiology and chilling injury of various fruits and vegetables. In recent years, exogenous phenylalanine (PA) application has been employed as a beneficial procedure for enhancing quality in fruits and vegetables by promoting higher phenols and flavonoids accumulation arising from higher PAL enzyme activity and proline accumulation exhibiting higher ROS scavenging capacity. Thus, the aim of this study was to investigate the postharvest application of H2S and PA on quality and postharvest storage of eggplant fruit during storage at 7 °C for 21 days. Material and Methods: Eggplant fruits (Solanum melongena cv. Hadrian) were harvested at commercially maturity stage in Jun 2019 from a greenhouse in Hashtgerd city, Iran. Fruit selected for uniform size, shape, and color, and immediately transported to the laboratory. They were divided into seven parts for the following treatments: control (0), hydrogen Sulfide (H2S) at 0.1, 0.2 or 0.3 mM and phenylalanine (PA) at 2.5, 5 or 7.5 mM. Each treatment was done in three replicates, consists of 24 fruits from each replicate, and then randomly divided into four groups include six fruits. One group was analyzed 24 hrs. after harvesting and another groups stored at 7 ± 1 °C and 85% RH for 21 days. At 7-day intervals, one group was taken at random and transferred for one day at 20 °C (shelf-life), and subjected to physicochemical analysis. For H2S fumigation, fruit was placed at the bottom of a sealed 15 L container with different aqueous sodium hydrosulfide (NaHS) solution concentrations for 10 min, and for PA treatments, the fruits were immersed in 10 L of fresh phenylalanine solution for 10 min and in distilled water as a control. The fruits were allowed to completely dry at room temperature before storage. Results and Discussion: The results showed that fruits treated by PA and H2S exhibited higher fruit firmness, chlorophyll, anthocyanin, total soluble solids (TSS), vitamin C, pH and titratable acidity (TA) accompanied by lower weight loss and chilling indices during storage at 7 ºC for 21 days. In control eggplant fruits, fruit firmness (24.2%), chlorophyll (45.8%), vitamin C (34.1 %), anthocyanin content (66.2 %) and TA (44.8) decreased, and weight loss (7.5 %), TSS (8.2%) and chilling indices (4.5 %) increased during 21 storage time. The maximum fruit firmness (1.37 and 1.34 kg cm-2), anthocyanin content (5.02 and 4.2 mg L-1) and TA (18.67 and 1.37 %), and the lowest weight loss (3.67 and 3.7 %) and chilling index (1.6 and 1.3 %) was found in fruits treated with H2S at 3 mM and PA at 7.5 mM during storage at 7 °C for 21 days, respectively. It has been reported that texture correlates with firmness and higher firmness is a characteristic indicator of good texture during postharvest storage of fresh products. Soluble solid contents, titratable acidity (TA) and sugars have been known as important attributes contributing in overall sensory quality of fruits and vegetables. Development of the chilling injury disorder significantly reduces quality of fruits and vegetables due to diminished consumer’s acceptance. So, start of chilling injury symptoms eventually becomes economically critical postharvest constraint that defines the storage life potential of the products. Decline chilling injury in responses to H2S and PA treatments may resulted from higher ROS scavenging enzymes SOD, CAT, APX and POD activity and proline, phenols and flavonoids accumulation giving rise to conferring chilling tolerance. Conclusion: According to results, PA at 7.5 mM and H2S at 3 mM had the highest positive effect on maintain firmness and fruit quality and reducing weight loss and chilling, therefor postharvest treatment of PA and H2S can be proposed to improve fruit quality and postharvest life during storage period.
Ali Hasani; Mohammad Hadi Khosh Taghaza; Mohammadtaghi Ebadi
Abstract
Introduction: Drying of medicinal and aromatic plants (MAPs) is a widely spread method offering physico-chemical stabilization by taking away part of the moisture content, producing different products with different qualitative properties and economical value. The main purpose of MAPs drying is ...
Read More
Introduction: Drying of medicinal and aromatic plants (MAPs) is a widely spread method offering physico-chemical stabilization by taking away part of the moisture content, producing different products with different qualitative properties and economical value. The main purpose of MAPs drying is to extend product shelf life, minimize packaging requirements and reduce shipping weights. Drying is used to stop the growth of microorganisms and preserve the quality of MAPs. There are different drying methods and their suitability can be determined by energy efficiency, drying time, preservation of active substances and other quality properties of the product, depending on market demand. Therefore, determining a suitable drying method to achieve higher active substances in medicinal plants is very important. Advantages of infrared drying include high efficiency of conversion of electrical energy into heat, a suitable alternative source for thermal energy, and uniform heating of the product surface. The aim of this study was to investigate the effect of infrared drying on drying time and the qualitative characteristics of sumac fruit (total color changes, total phenolic content, organic acids, and vitamin C). Material and Methods: Sumac fruits (from the forests of Sardasht city in West Azerbaijan Province, Iran) were used after complete separation from clusters and additional parts for drying and performing the desired treatments. In this research, an infrared dryer was used to dry the sumac sample which was made by the Department of Biosystems Engineering of Tarbiat Modares University. For this study, a factorial experiment was performed based on a completely randomized design. In this experiments, three levels of radiation intensity (0.2, 0.3 and 0.5 watts per square centimeter) and three levels of air velocity (0.5, 1 and 1.5 meters per second) were used. The sample tray inside the dryer was connected by a rod to a digital scale at the bottom of the dryer. The scale had a computer connection port that could measure and record the weight of the fruits continuously during drying. To determine the initial moisture content, 3 samples (50 g) were placed in an oven at 105 °C and after three hours, the samples were taken out of the oven and weighed, and finally the moisture content of the product was calculated on wet basis. The initial moisture content of sumac fruits was approximately 17%. Drying was continued until the product reached a moisture content of 7%. Drying time and quality characteristics of sumac fruit (color changes, total phenolic content, organic acids, and vitamin C) were measured. Colorimeter (Hunterlab, Color Flex model, USA) was used to check the color changes of sumac fruits during drying and the total color changes ( ) compared to the fresh sample were calculated. To measure the total phenolic content, Folin-Ciocalteu phenol reagent was used by a spectrophotometer (Samsung, Smart Spec Flus model, South Korea). Titration method was used to measure vitamin C and organic acids. Finally, based on all the mentioned parameters, the optimization was performed by Design Expert software (version 10) and the best score was obtained based on the utility index. Results and Discussion: The results showed that the intensity of infrared radiation and air velocity had a significant effect on the studied characteristics except total phenolic content. The minimum and maximum drying times were obtained at the highest and lowest infrared intensities and air velocities, respectively. Increasing the infrared intensity and subsequently increasing the temperature had a negative effect on the total color changes, organic acids and vitamin C, so that the least total color changes and the highest amount of organic acids and vitamin C were obtained by reducing the intensity of infrared radiation. The lowest total color change and the highest amount of organic acids were obtained in the treatment of 0.2 W cm-2 × 1.5 m s-1 and the highest amount of vitamin C in 0.2 W cm-2 × 1 m s-1 and 0.3 W cm-2 × 0.5 m s-1 treatments, respectively. The values obtained from the optimization parameters for the studied indicators (drying time, total color changes, organic acids, and vitamin C) showed that the best point for drying of sumac fruit was the infrared radiation intensity of 0.3 W cm-2 and air velocity of 0.5 m s-1. In this treatment, the highest utility index obtained by software was 0.71. Conclusion: Infrared drying reduced the drying time of sumac fruit compared to traditional drying methods (shade and sun drying). In addition to reducing the drying time, infrared drying was a suitable method for preserving the phytochemical properties and color changes of sumac fruits.
Mohsen Mozaffari; Farhang Razavi; Vali Rabiei; Azizollah Kheiry; Akbar Hassani
Abstract
Introduction: Demand for healthy and high-quality fruits has increased in the markets, and compositions such as vitamins, sugars, and anti-oxidant properties of fruits have attracted many consumers. Grapes contain phenols, flavonoids, anthocyanins, tannins and vitamins with high antioxidant properties. ...
Read More
Introduction: Demand for healthy and high-quality fruits has increased in the markets, and compositions such as vitamins, sugars, and anti-oxidant properties of fruits have attracted many consumers. Grapes contain phenols, flavonoids, anthocyanins, tannins and vitamins with high antioxidant properties. Antioxidants support biological systems such as proteins, amino acids, lipids, and DNA against oxidative damage produced by active oxygen species of ROS, resulting in reduction of cell damage and death, cardiovascular disease and cancers in the human body. Selenium is essential for humans and animals and should be fed through a diet, for this reason, FAO recommends entering selenium to agricultural products (especially fruits and vegetables). In recent years, selenium has been recognized as a useful element for plants that have been toxic at high concentrations but at desirable concentrations, it has positive antioxidant effects, increases growth and significantly affects seed germination. Selenium protects plants from several abiotic stresses such as heavy metal and arsenic, ultraviolet radiation, and biotic stress such as pathogens and pests. Selenium neutralizes oxidative stress interfering with lipid peroxidation, and accelerates gluthatione peroxidase (GSH-Px) activity, this phenomenon delay plant senescence and diminish postharvest losses. This element increases the yield and improves the quality of the fruits and vegetables. When Camelia oleifera plants were treated with selenium, cellular content of linoleic acid and sterol were elevated but oleic acid content diminished. Selenium treatment had a significant effect on preserving the sensory and the postharvest quality by decreasing respiration rate and ethylene biosynthesis in broccoli by diminishing phenylalanine ammonia-lyase (PAL) activity and ethylene production in lettuce and chicory. Foliar application of peach and pear trees with selenium, decelerated fruit softening rate and elongated shelf-life. Therefore, treatment of agricultural products with the appropriate amount of selenium can have a positive effect on the increase of the quality and enrichment of selenium in fruits and also play an important role in human health.
Materials and Methods: In order to investigate the effect of selenium as foliar application (0, 1, 2 and 3 mg L-1) on quality traits, antioxidant compounds and enrichment of grape cv. Fakhri, an experiment based on randomized complete block design with three replications in a vineyard (Kurdistan Povince, Ghorveh town) was performed. The 15-year-old vines were sprayed with selenium solution plus 0.1% of Twin 20 as surfactant until the leaves were completely wet (for each vine about 0.5 liter) at three stages of berry growth and development: Berry formation, Lag phase and veraison. A 1000 mg L -1 stock solutions (Made by the Belgian company CHEM-Lab, containing selenium ion Se+6) was used to prepare the desired solutions. At commercial fruit maturity stage (20° Brix), samples of fruits and leaves randomly were collected from treated and control vines and were immediately transferred to the postharvest physiology laboratory. Traits such as total chlorophyll, carotenoid, nitrogen, potassium, selenium content of leaves and fruits, and also, total soluble solids, soluble sugars, titrable acidity, acidity (pH), vitamin C, phenol and flavonoids, antioxidant capacity in fruits and the berry weight were evaluated. Data were analyzed using SAS statistical software (SAS V.9.4), and means were compared by Duncan’s multiple range tests at the 5% of probability level.
Results and Discussion: Results showed positive effects of selenium treatment on evaluated traits. As a result, 2 mg L-1 of selenium increased photosynthetic pigments, nitrogen and leaf potassium, soluble solids, soluble sugars, vitamin C, total phenol, antioxidant capacity of fruits in comparison with untreated vines. The highest amount of titrable acidity, total fruit flavonoid and leaf selenium was recorded in vines treated with 3 mg L-1 selenium, whereas, this treatment had less effect on other traits. The highest amount of berry weight was obtained in 1 mg L-1 of selenium. However, none of the selenium treatments had significant effect on the juice acidity (pH). In general, the results showed a positive effect of selenium on improvement of antioxidant properties, quality and enrichment of grape, and 2 mg L-1 selenium with the highest effect on traits was identified as the best treatment. According to other researchers, foliar application of selenium in "Starking Delicious" apple cultivar was effective in enhancement of fruit selenium content and nutritional properties, postponing the flesh firmness decrease, and delaying fruit ripening resulting from less ethylene production, therefore significantly affecting apple fruit quality and storage life.
Mahsa Fateh; Taher Barzegar; Farhang Razavi
Abstract
Introduction: Sweet pepper (Capsicum annuum L.) is a worldwide used vegetable, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in ...
Read More
Introduction: Sweet pepper (Capsicum annuum L.) is a worldwide used vegetable, which is an excellent source of ascorbic acid and has high antioxidant capacity against oxidative damage caused by free radicals. Ascorbic acid (AsA) is a water-soluble vitamin that plays a key physiological role in scavenging reactive oxygen species (ROS), and enzyme cofactor. In recent years, the application of exogenous AsA has received much attention for use as a biologically safe compound for postharvest quality maintenance of many horticulture crops. Calcium is an essential micronutrient that plays a vital role in maintains cell wall stability, integrity and determining the fruit quality. To our knowledge, however, little information is available regarding the effect of ascorbic acid and calcium lactate on pepper fruits. Thus, the aim of this study was to investigate the foliar application of ascorbic acid and calcium lactate on growth, yield and fruit quality of sweet peppers.
Materials and Methods: To study the effect of foliar application of calcium lactate (Ca) and Ascorbic acid (AsA) on growth, yield and fruit quality of sweet pepper, the field experiment was carried out from June to September 2016 at Research farm of faculty of Agriculture, at the University of Zanjan, Iran. Pepper plants (cv. California Wonder) were cultivated by applying conventional farming practice for growing in open air conditions. 210 plants (30 plants for each treatment) were selected for uniform size and fruit load, and were sprayed three times (0, 15, 30 days after full bloom) with an aqueous solution containing different concentrations of Ca (0, 0.5, 1 and 1.5 g L-1) and AsA (100, 200 and 300 mg L-1). Each treatment was carried out with three replicates. Pepper fruit were harvested at commercial maturity stage, and transferred to the laboratory on the same day. Leaf area was recorded whit measurement leaf area (DELTA-T DEVICEC LTD, ENGLAND). After fruit harvested, plant length was measured. Fruit was weighted after harvest to determine mean fruit weight. The fruit number per plant and fruit yield per plant was measured to determine of total yield. The total yield expressed in kg ha–1. Flesh firmness was determined with penetrometer (model Mc Cormic FT 32), using an 8 mm penetrating tip. Results were expressed in kg cm-2. The pH values of solutions were monitored with pH meter. TSS was measured in the extract obtained from three fruit of each replicate with a digital refractometer Atago PR-101 (Atago Co., Ltd., Tokyo, Japan) at 20◦C. Total ascorbic acid content was expressed as mg per 100 g of juice. Antioxidant activity was measured using the free radical scavenging activity (DPPH) and calculated according to the following formula: RSA%= 100(Ac-As)/Ac. Statistical analyses were performed with SPSS software package v. 20.0 for Windows, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion: The results showed that foliar application of AsA had significant effects on growth and fruit yield. The highest fruit yield (897.1 g plant-1) was achieved at 300 mg L-1 AsA that had no significant difference with 200 mg L-1 AsA. Foliar application of AsA markedly increased vitamin C content, and also the highest value of total soluble solid (5.7 °B) was recorded from 300 mg L-1 AsA. Ca had no significant effects on growth and fruit yield but significantly improved fruit firmness. The highest fruit firmness (2.13 and 2.16 kg cm-1) was obtained from 1 and 1.5 g L-1 Ca. The maximum antioxidant activity was achieved with application of 300 mg L-1 AsA and 1.5 g L-1 Ca. The fresh sweet peppers were an important source of ascorbic acid for human consumption. AsA significantly increased the amount of vitamin C in the plum and sweet pepper fruits. Foliar treatment of Ca increased vitamin C content. Increasing vitamin C content in fruits after treatment with Ca could be related to inhibiting action of calcium on the activities of ascorbic acid oxidase that use ascorbate as a substrate. The results indicated that treatment of Ca produced fruits with higher firmness compared to control and other treatments. Firmness and resistance to softening can be increased by the addition of Ca, due to interaction of calcium with pectate acid in the cell wall to form calcium pectate and retarding polygalacturonase activity. Differences in the percentage of TSS content at the time of harvest indicated the AsA and Ca effects on carbohydrate accumulation in fruits, which had different potential on respiration rates and consequently storability of plants. The exogenous application of AsA and Ca in sweet pepper plants indicated that treatments had significant effects on ascorbic acid content of sweet peppers. The antioxidant activity has positive correlation with total phenolic content, flavonoids and content of ascorbic acid.
Conclusion: The results of our research indicated that per-harvest foliar application of AsA increased plant growth, fruit number and weight. Also, AsA and Ca treatments improved fruit quality attributes including vitamin C, fruit firmness, TSS and antioxidant activity. These results suggest that AsA and Ca treatments, especially AsA 300 mg L-1 and Ca 1.5 g L-1, may be proposed to improve fruit quality.
Yaser Javan; Mohammad Javad Nazarideljou
Abstract
Introduction: Cucumber (Cucumis sativus L.) is an important fruit crops and cultivation in soilless condition may help to improve the quality and productivity. Due to susceptibility of cucumber to climate condition, the cultivation should be done under precise consideration. Nutrient uptake by plant ...
Read More
Introduction: Cucumber (Cucumis sativus L.) is an important fruit crops and cultivation in soilless condition may help to improve the quality and productivity. Due to susceptibility of cucumber to climate condition, the cultivation should be done under precise consideration. Nutrient uptake by plant is greatly affected by the concentration, as well as by the elements ration, especially the cations. Calcium and potassium play an important role in crops biology, functions, quality, and productivity. This experiment was conducted to evaluate the effect of different K: Ca ratios on quality and productivity of cucumber cv. ‘Negin’ to determine the best K: Ca ratio.
Material and Methods: This experiment was done in a hydroponic greenhouse with polyethylene cover. Day/night temperatures were 26±2 and 19±2, respectively. Relative humidity was adjusted at 55-60%. A pot experiment was conducted based on completely randomized design with three replications (9 plants/rep). Treatments included K: Ca ratios (2, 1.5, 1, 0.7, and 0.5). Cucumber cv. ‘Negin’ was treated with above-mentioned K: Ca ratios in an open soilless system equipped with drippers and plants were fertigated basis on Steiner nutrition formula. The culture medium was coco-fibre: perlite (1:1 v/v). Morpho-physiological, as well as biochemical parameters of cultivated plants including, plant fresh and dry weigh, leaf area, root volume, fruit length and weight, total carbohydrates, total phenol, vitamin C content, and fruit yield were determined.
Results and Discussion: Results indicated that morpho-physiological and biochemical parameters, also, plant fresh and dry weight of cucumber cv. ʽNegin’ were significantly affected by application of different K: Ca ratios in nutrient solution (P
Ara Alinejad Elahshah; Hossein Moradi; Hossein Sadeghi
Abstract
Introduction: Strawberry (Fragaria × ananassaDuch.,Rosaceae). fruitis rich of fiber, vitamin C, potassium and antioxidants. Since the balance of nutrients at the appropriate time for commercial fruit production, yield improvement and fruit quality is essential, so foliar application at key stages could ...
Read More
Introduction: Strawberry (Fragaria × ananassaDuch.,Rosaceae). fruitis rich of fiber, vitamin C, potassium and antioxidants. Since the balance of nutrients at the appropriate time for commercial fruit production, yield improvement and fruit quality is essential, so foliar application at key stages could have a positive effect on the quantitative and qualitative characteristics of perennial crop fruits. Among essential mineral nutrients that are involved on plant physiology, micronutrients of zinc (Zn) and boron (B) because of their association with synthetic hormones are particularly important. In a study by Lolaei et al. (2012) conducted showed that the foliar application at flowering stage increased fruit quality and yield of strawberrycultivar ʻCamarosa’. The results of Rafeii and Pakkish(2014) indicated that spraying of strawberry cultivar ʻCamarosa’ with boric acid had a significant effect on yield, fruit weight, chlorophyll and leaf area. So according to the importance of micronutrients on horticultural yield improving and environmental protection, this investigation was conducted to evaluate the effect of foliar application of zinc and boron and combination of them on quantitative and qualitative characteristics of strawberry cultivar ʻAromas’ in hydroponic system.
Material and Methods: The experiment was arranged in factorial based on a complete randomized block design with 9 treatments and 9 replications in 2015 and 2016 in greenhouse and laboratory of Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran. Experimental treatments were included: zinc at three levels (0, 100 and 200 mg l-1) of fertilizer source zinc sulfate and boron at three levels (0, 500 and 1000 mg l-1) of fertilizer source boric acid as alone or combined. Spraying of strawberry cultivar ʻAromas’ at 3 stages in hydroponic system were applied after the chilling requirement treatment. When Fruits were stained 75-80% and have appropriate size, were harvested. Traits that were evaluated include: vitamin C, antioxidant activity, total soluble solids (TSS), titratable acidity (TA), taste index (TSS/TA), pH of fruit juice, chlorophyll a, chlorophyll b, carotenoid, fruit weight, fruit length and diameter, leaf number, petiole length and plant height. The data collected were statistically analyzed using the computer software using SAS 9.1 and MSTATC, Analysis of variance techniques were employed to test the overall significance of the data, while the least significant difference (LSD) test (P ≤ 0.05) was used to compare the treatment means.
Results and Discussion: Results indicated that foliar application of Zn and B significantly affected on the vitamin C, antioxidant activity, TSS, TA, TSS/TA, pH of fruit juice, chlorophyll a, chlorophyll b, carotenoid, fruit weight, fruit length and diameter, leaf number and plant height (1% or 5% of probably level), while the Petiole length was not significantly affected. Between the different nutrient levels of zinc sulfate application at the concentrations of 100 and 200 mg l-1, boric acid application at the concentration of 500 mg l-1, the combination of zinc sulfate at 100 and 200 mg l-1 with boric acid at 500 mg l-1 play a significant role at increasing studying characteristicsexcept the content of TA. Zinc is effective at the formation of growth hormones and chloroplasts, it is also necessary for chlorophyll biosynthesis and also plays a very important role at cell division and the protein synthesis and carbohydrates metabolism. It seems this subject caused increased plant height, leaf number, petiole length, diameter, length and weight of the fruit and chlorophyll by foliar application. Boron is an element which increases weight by effect of reproductive growth and help to material production, production and transfer of carbohydrate, and nutrient by boron is necessary for fruit set and fruit retention. The results showed that zinc sulfate is effective on TSS, TA, taste index and pH, the increase may be attributed to their effects on different enzymes which are involved in the formation of proteins, acids and sugars, also enough amounts of boron in the plant, increased carbohydrate transport to fruit and areas of active growth and its effect is evident in increasing the amount of fruit sugar. Because of increased vitamin C and antioxidant capacity of plants had been sprayed with boron and zinc can be attributed to zinc that plays an active role in auxin production in plants, and vitamin C increases the production of auxin. Similarly, Kazemi (2014) reported the highest pH of fruit juice, TSS and TA at 150 mg l-1 of Zn for strawberry cultivar ʻPajaro’ and the lowest of these parameters was recorded in control. The results of our study is in accordance with Mashayekhi and Atashi(2012) who reported a significant positive correlation between chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid content of strawberry cultivar ʻCamarosa’ leaves that had been sprayed by B and sucrose. As Khan et al. (2015) simultaneously combined application of Zn and B in the ʻKinnow’ mandarin fruit increased vitamin C, tree height and fruit weight, diameter and length significantly that was consistent with our results.
Conclusions: Since the foliar application of zinc sulfate at 100 and 200 mg l-1 with boric acid at 500 mg l-1 showed significant effect on quantitative and qualitative properties of strawberry, so to reduce the environmental effects caused by the indiscriminate use of chemical fertilizers, foliar application of micronutrients is recommended as an effective management solution in the production of strawberry cultivar ʻAromas’ under hydroponic culture.
Fateme Shabbepour Bandari; Somayeh Rastegar; Mostafa Ghasemi
Abstract
Introduction: Ziziphus mauritiana is a drought-tolerant fruit tree that originated in Central Asia. Ziziphus mauritiana v. khormaee is one of the cultivars of Hindi Ber which was favored by many people in the world and Iran. Maintenance of fruit quality is critical while employing any new technology ...
Read More
Introduction: Ziziphus mauritiana is a drought-tolerant fruit tree that originated in Central Asia. Ziziphus mauritiana v. khormaee is one of the cultivars of Hindi Ber which was favored by many people in the world and Iran. Maintenance of fruit quality is critical while employing any new technology for increasing production. Fruit quality such as color, firmness, size, antioxidant and pulp to seed ratio had important role in marketability of fruits that can be affected by some chemicals. The quality of fruit can be influenced by growth conditions, developmental stage at harvest and postharvest factors. Calcium treatment, either by prearrest foliar sprays or by postharvest dips, represents a safe and potentially effective method for increasing the quality of some fruits. Prearrest treatments are more effective when calcium is applied directly to the fruit surface, since calcium moves in the transpiration stream and little or no subsequent translocation occurs from leaf to fruit. Calcium is an essential element which involved in cell division, elongation and fruit growth. Polyamines have the properties of growth promoters. Exogenous application of PAs has been reported to improve fruit retention and yield of fruits. Although a number of studies demonstrated the significance of PAs in reducing fruit drop and improving yield in various fruit crops, information on their effects on fruit quality is scant. Salicylic acid (SA) is an endogenous growth regulator of phenolic nature, which participates in the regulation of physiological processes in plants. Little information is available on the effects of foliar application of different Pas, salicylic acid and calcium on the quality of Ber fruit.
Materials and Methods: In this study, we evaluated the effect of foliar application of calcium chloride, putrescine and salicylic acid in various concentrations on fruit quality and quantity characters of Hindi ber(Ziziphusmauritiana. khormaee). Fruits selected from trees of the same age with branches of the same height and spraying with calcium chloride (0.5 and 1.5%), putrescine (1 and 2 mM), salicylic acid (1 and 2 mM) and distilled water (control) in two stages before commercial maturity. First stage, when fruit were 5-10 mm in size and second stage, when fruit color break. After the harvest fruit were transferred immediately to the laboratory and measured quantitative and qualitative parameters such as firmness, fruit length, fruit diameter, volume of fruit juice, pulp to seed ratio, soluble solids, titratable acidity, pH, ascorbic acid, chlorophyll a, b and carotenoids, color parameters and antioxidant activity. The length and diameter of the fruit were measured using a micrometer caliper. Total soluble solids (TSS) were determined using a digital refractometer. Firmness values of each individual fruit were measured at two points of the equatorial region by using a texture analyzer with a 5 mm Lurton 5005 probe. Fruits surface color was measured on individual fruit from each replicate at two opposite sides using a chromameter (CR 400, Minolta).For vitamin C (ascorbic acid) determination the titrimetric method with 2, 6-dichlorophenolindophenol reagent was applied. Antioxidant activity of fruit was tested by free radical DPPH scavenging.
Results and Discussion: The results showed that foliar application of calcium chloride, putrescine and salicylic acid favorably was effective on quantitative and qualitativecharacteristics Hindi Ber genotype.Kormaed. In treated fruits, total soluble solids (TSS), carotenoids and a* value were less and degree of firmness, fruit length, diameter, volume of fruit juice, pulp to seed ratio, titratable acidity, ascorbic acid (vitamin C), antioxidant activity, chlorophyll a and b, chroma index and hue angle were higher than control. Parameters of L* and b* in treated fruits had not significant different with control. Control fruits had the minimum carotenoid and the maximum chlorophyll. Fruit treated with putrescin(2mM) and control has the highest L* value. Different concentration of treatment that used hadn’t any significant difference with together in antioxidant characters. Maximum and the minimum firmness were found in salicylic acid (1mM) and control respectively. Among different treatments, CaCl2 1.5% showed highest volume of fruit juice of course had not significant difference with other treatments. The highest total soluble solids observed in control and highest vitamin C value showed in putrescin treatments
Conclusions: Generally, our result showed treatments that study in this study were effective on quality of Ber fruit. Calcium chloride (0.5 %), putrescine (2 mM), salicylic acid (2 mM) had the best effect on fruit quality. Therefor this chemical can be used to improve Ber fruit quality for consumer and marketing.
Materials and Methods: In this study, we evaluated the effect of foliar application of calcium chloride, putrescine and salicylic acid in various concentrations on fruit quality and quantity charachters of Hindi ber (Ziziphus mauritiana genotype.khormaee). Fruits selected from trees of the same age with branches of the same height and spraying with calcium chloride (0/5 and 1.5%), putrescine (1 and 2 mM), salicylic acid (1 and 2 mM) and distilled water (control) in two stages before commercial maturity. First stage, when fruit were 5-10 mm in size and second stage, when fruit color break. After the harvest fruit were transferred immediately to the laboratory and measured quantitative and qualitative parameters such as firmness, fruit length, fruit diameter, volume of fruit juice, pulp to seed ratio, soluble solids, titratable acidity, pH, ascorbic acid, chlorophyll a, b and carotenoids, color parameters and antioxidant activity. The length and diameter of the fruit were measured using a micrometer caliper. Total soluble solids (TSS) were determined using a digital refractometer. Firmness values of each individual fruit were measured at two points of the equatorial region by using a texture analyzer with a 5 mm Lurton 5005 probe. Fruits surface color was measured on individual fruit from each replicate at two opposite sides using a chromameter (CR 400, Minolta). For vitamin C (ascorbic acid) determination the titrimetric method with 2, 6-dichlorophenolindophenol reagent was applied. Free radical scavenging activity (antioxidant activity) of fruit was tested by DPPH.
Results and Discussion: The results showed that foliar application of calcium chloride, putrescine and salicylic acid favorably was effective on quantitative and qualitative characteristics Hindi ber genotype. Kormaed. In Treated Fruits, Total Soluble Solids (TSS), carotenoids and a* value were less and degree of firmness, fruit length, diameter, volume of fruit juice, pulp to seed ratio, titratable acidity, Ascorbic acid (vitamin C), antioxidant activity, chlorophyll a and b, chroma index and hue angle were higher than control. Parameters of L* and b* in treated fruits had not significant different with control. Control fruits had the minimum carotenoid and the maximum chlorophyll rather than other treatments. Fruit treated with Putrescin (2mM) and control has the highest L* value. Different concentration of treatment that used hadn’t any significant difference with together in antioxidant characters. Maximum and the minimum firmness were found in Salicylic acid (1Mm) and control respectively. Among different treatments, Cacl2 1.5% showed highest volume of fruit juice of course had not significant difference with other treatments. Control showed the highest Total Soluble Solids and significant differences with other fruits. Putrescin in both concentration had highest vitamin C content that had significant difference with control fruits.
Conclusions: Generally, our result showed treatment that study in this study were effect on quality of Ber fruit. Calcium chloride (0/5 %), putrescine (2 mM), salicylic acid (2 mM) had the best effect on fruit quality. Therefor this chemical can be used for improve Ber fruit quality for consumer and marketing.
Zahra Falati; Mohammadreza Fattahi; Ali Ebady
Abstract
Introduction: Plums (Prunus spp.) as one of the most popular stone fruits, have low calories and high nutritional value. Over the past decades global production of European and Japanese plums reached from 6,110,870 tons in 1990 to 11,528,337 tons in 2013. In the same period plum production in Iran reached ...
Read More
Introduction: Plums (Prunus spp.) as one of the most popular stone fruits, have low calories and high nutritional value. Over the past decades global production of European and Japanese plums reached from 6,110,870 tons in 1990 to 11,528,337 tons in 2013. In the same period plum production in Iran reached from 118,936 tons to 305,262 tons. Great variety of plum fruits caused differences in chemical composition as well. Plum fruits are rich in bioactive compounds or biochemicals such as vitamins (A, C and E), anthocyanins and other phenolic compounds which have high antioxidant activity.
Materials and Methods: This research was done in a randomized complete block design with three replications in Horticultural Research Station at College of Agriculture and Natural Resources of Tehran University in 2013-2015. Fruit quality characteristics such as vitamin C content, color traits of the fruit skin and flesh, the content of carotenoids, anthocyanins, total phenolics and antioxidant capacity of 16 plum and prune cultivars and genotypes were evaluated.
Results and Discussion: Analysis of variance showed significant differences in terms of all measured factors. The highest L* index (brightness) of fruit skin was observed in 'Tanasgol" and "Compooti" and then in "Golden Drop" and "Shams" cultivars and the lowest level of that was measured in "Sugar" and "Gogeh Sabz" cultivars. "Black Star" and "Gogeh Germez" Showed the highest brightness of fruit flesh among examined cultivars and the lowest brightness of fruit flesh was investigated in "Sugar". A* color index of skin and flesh of fruit also showed significant differences among investigated cultivars and the highest level of that in "Ozarak" cultivar was observed. "Gogeh Sabz" and "Golden Drop" also had the lowest level of this index. "Gogeh Germez" had the highest of a*color index of fruit flesh and "Japanese" cultivar was in second place. The lowest level of this index was measured in "Ozarak" and "Shams" cultivars. "Tanasgol" and "Compooti" had the highest fruit skin b*color index among cultivars and "Santarsa", "Sugar," "Stanley" and "Bukhara" showed the lowest of that. "Black Star" and after that "Tanasgol" and "Dargazi" had the highest b*color index of fruit flesh. "Japanese" had also the lowest b* color index of fruit flesh. The intensity or color purity varied among cultivars and the highest of that was observed in "Tanasgol" and "Compooti" and then in "Ozarak". "Black Star" had the highest chroma of fruit skin and the highest fruit flesh color intensity. The lowest of this index in the fruit flesh was observed in "Santarosa", "Sugar" and "Japanese" cultivars. Vitamin C (ascorbic acid) content varied in investigate cultivars. "Gogeh Germez" and "Japanese" had the highest vitamin C content and "Stanley" was showed the lowest amount of vitamin C. "Golden Drop ","Santarosa" and "Compooti" showed the highest total carotenoid among examined cultivars and "Gogeh Germez" had the lowest total carotenoid. "Gogeh Germez" and "Compooti" had the highest and lowest amount of anthocyanin index respectively. The highest total phenol and antioxidant activity was measured in "Ozarak". The lowest total antioxidant capacity was in"Gogeh Sabz". The results showed that There was high correlation (r= 0.93) between antioxidant capacity and a* fruit skin color index. High correlation (r= 0.83) between phenol content and antioxidant capacity of fruits was also observed. Between a* color index of fruit skin and phenolic content was observed high correlation (r= 0.89). As well as between anthocyanin and phenolic content and between anthocyanin and a* fruit skin color index, respectively (r= 0.86) and (r= 0.59) high correlation was detected.
Conclusions: "Ozarak" in terms of antioxidant activity and total phenol component was superior. The highest amount of anthocyanin related to the "Gogeh Germez". "Golden Drop"," Santarosa" and "Compooti " had the highest total carotenoid and "Gogeh Germez" and "Japanese" had the highest vitamin C content among investigated cultivars. By identification of superior cultivars In terms of phytochemical compounds, these cultivars can be used in breeding programs to improve these nutritional quality of fruits. The results showed that the major phenolic compounds were gathered on the skin of plum fruits. Hence the "Ozarak" cultivar having the highest a*color index of fruit skin had the highest total phenol and antioxidant capacity among the investigated cultivars but "Gogeh Germez" by having the highest a*color index of fruit flesh and anthocyanins content higher than "Ozarak" cultivar, had low phenolic content and antioxidant capacity compared to the "Ozarak".
Zahra Davarkhah; Bijan Kavoosi
Abstract
Introduction: Table grape (Vitis vinifera L.) is one of the most important small fruits in Iran produced in a wide range of climates from temperate to tropical regions. Khoshnaw cultivar is one of the most important table grapes in Iran. Vineyard soil in many parts of Iran is calcareous, leading to the ...
Read More
Introduction: Table grape (Vitis vinifera L.) is one of the most important small fruits in Iran produced in a wide range of climates from temperate to tropical regions. Khoshnaw cultivar is one of the most important table grapes in Iran. Vineyard soil in many parts of Iran is calcareous, leading to the decrease in the availability of micronutrients and exposure of vines to severe nutritional disorders. Lack of imbalanced fertilization is one of the reasons for the reduction in yield as well as fruit quality of vineyards. Iron, magnesium and zinc are essential nutrients that play an important role in increasing production and product quality. Zinc and iron deficiencies are the most common micronutrient disorders that have been observed in many vineyards of Iran. Other common deficiencies include manganese, boron, copper, and molybdenum. Most vineyards of Boyer Ahmad located in regions, where soil temperature is very low in spring, and obviously under these conditions and just when the grapevines need to make most of the mentioned elements, absorption of nutrients from the soil by the roots is reduced. However, there is high amount of lime (≥ 60%) in the soil of the same area in this condition with high pH (7.9). Therefore, under this situation, vines cannot uptake iron and other micronutrients including zinc and boron. The fertilizer sources and time of their application are two important factors. The aim of this study was to determine the best concentration and application time of Ferozinc fertilizer on the quantitative and qualitative characteristics of table grape cv. khoshnaw.
Materials and Methods: The experiment was conducted to investigate the effect of foliar application of some micronutrient elements before and after flowering on quantitative and qualitative characteristics of table Grape cv. Khoshnaw in Yasuj during 2012. An experiment was conducted in private vineyards in Chitab district of BoyerAhmad region. The average annual precipitation was 676.7 mm. The minimum and maximum temperatures of this area varied from -7.8 oC to 35.3oC during the year. The average minimum and maximum temperatures in growing season were 13 oC and 29.5oC, respectively. 15-year-old own-rooted vines were trained by using head system. The vines were spaced 2.5 × 3 m. They were pruned by using spur pruning which left about 60 buds on each vine. The experiment was arranged as factorial based on randomized complete block design with two factors and four replications. The first factor included different levels of Ferozinc fertilizer (0, 500, 1000, 1500, and 2000 mg/l) and the second factor included different spraying times (before flowering, after flowering, and both times). The quantitative factors measured were the average of bunch weight, and average of fruit weight per bunch; and qualitative factors were percent of soluble solids (TSS percentage), the reaction of juice (pH), total acidity (TA percentage), TSS/TA ratio and vitamin C, respectively. The data were analyzed using MSTATC package program and means were separated using Duncan's Multiple Range Test at P ≤ 0.05 and P ≤ 0.01.
Results and Discussion: Results showed that the effects of Ferozinc fertilizer application were significant (p≤0.01) on the average of bunch weight, average of fruit weight per bunch, TSS/TA ratio, pH and vitamin C content. Moreover, the effect of foliar application time on all traits was significant, except for juice pH (p≤0.01). Based on the results of mean comparison, the interaction effect between different levels of Ferozinc fertilizer and times of foliar application on vitamin C content and pH of grape juice were significant (p≤0.01). The highest cluster weight (220.222 gr), average fruit weight per cluster (215.887 gr), TSS/TA ratio (31.29), pH (3.68) and vitamin C (2.849 mg/100 cc fruit juice) were obtained in the treatment containing 1000 mg/l Ferozinc fertilizer and both application times (before and after flowering).
Conclusions: In general, the results of the present study showed that the unavailability of optimal nutritional conditions in control treatment increased the quality of fruits. Therefore when the plant is faced with nutrition abnormalities, moderate consumption of elements could enhance quantity and quality of products. According to the results of this research, application of ferozinc fertilizer at concentration of 1000 ppm before and after flowering is recommended to improve the quantitative and qualitative characteristics of table grape cv. Khoshnaw under irrigation conditions in this area.
Hamid Hassanpour
Abstract
Introduction: Cornus is a very large genus which comprises 40 species of shrubs and trees native to Central and Southern Europe and parts of Western Asia. Many species are grown as ornamentals. Only a few species are grown for their fruits, chief among which is the cornelian cherry (Cornus mas L.). Study ...
Read More
Introduction: Cornus is a very large genus which comprises 40 species of shrubs and trees native to Central and Southern Europe and parts of Western Asia. Many species are grown as ornamentals. Only a few species are grown for their fruits, chief among which is the cornelian cherry (Cornus mas L.). Study on the nutritional value of the cornelian cherry has focused on nutrients which play a role in preventing diseases such as scurvy. Fresh cornelian cherry fruits contain twice as much vitamin C as oranges. The aim of this study was to investigate the distribution and physicochemical properties of cornelian cherry (Cornus mas L.) fruits in Iran.
Materials and Methods: Distribution of cornelian cherry was traced on the map according to the visitation of the different provinces. In order to study the characteristics of the fruit, samples were taken from five different areas and various parameters were evaluated. Fruit and seed weight (g) were measured by a digital balance with a sensitivity of 0.001 g (Scaltec Company, Gottingen, Germany; model SPB31). Fruit length (mm), fruit diameter (mm), seed diameter (mm) and seed length (mm) were measured using a digital vernier caliper with a sensitivity of 0.01 mm. TSS was determined by refrectometry of one drop extracted juice of each fruit at 25°C (Kyoto Electronics Manufacturing Co. Ltd., Japan, and Model RA-250HE). TA was determined by titration and the pH value was indicated by pH meter (HBJ-260). In addition, total ascorbic acid content was determined by the dinitrophenylhydrazine (DNPH) method. Data were subjected to calculate of descriptive statistics by SPPSS and means were separated by Duncan’s multiple range test at p
Soheila Mohammadrezakhani; Zahra Pakkish; Somaye Rafeii
Abstract
Introduction: Recently, strawberry growers have been mostly interested in growing cultivars for the fresh market because of its profitability, but on the other hand it requires more complicated technologies and well-educated workers. High quality of the fruit for the fresh market is an important factor ...
Read More
Introduction: Recently, strawberry growers have been mostly interested in growing cultivars for the fresh market because of its profitability, but on the other hand it requires more complicated technologies and well-educated workers. High quality of the fruit for the fresh market is an important factor attracts customers and determines their choice and prices. Fruit production cost for the fresh market needs to be calculated and efficient methods and technologies also should be taken into consideration. New environmentally friendly mineral-organic fertilizers can improve fruit quality and yield of dessert strawberry cultivars. The desired effects was obtained through the activity of fertilizer’s components, which very often belong to different groups of natural hormones, elicitors, vitamins, flavonoids, amino acids, etc. Numerous breeding programs have been aimed at improving strawberry taste and disease resistance. Three major components of fruit organoleptic quality are flavor, sweetness, and acidity. Several studies have been devoted to strawberry aroma. Fruit with intense flavor also have high titratable acidity and high soluble solids. Numerous studies have addressed strawberry sweetness and acidity. Fruit soluble solids, sugars, titratable acidity, and organic acids at maturity are quantitatively inherited. Moreover, there appears to be genetic variations for these fruit quality traits. Numerous biochemical changes are observed during strawberry development and especially during fruit ripening. The major soluble constituents of maturing and ripe strawberries are soluble sugars and organic acids. The major soluble sugars in strawberries are glucose, fructose, and sucrose. The major organic acid is citric acid. This acid contributes greatly to fruit titratable acidity, which declines gradually during fruit development. The sugar/ organic acid ratio is a major parameter of strawberry taste. Brassinosteroids (BRs) are a class of poly hydroxyl steroids, which have been recognized as a class of plant hormones. These were first explored when Mitchell et al. (1970) reported that cell division and elongation were promoted by the treatment of organic extracts of rape (Brassica napus L.) pollen. Brassinolide (BL) was the first isolated brassinosteroid when Michael et al. (1979) isolated the biologically active molecule. Researches showed that brassinosteroids are essential for many physiological functions in plants, however little is known concerning where and when they are synthesized. In young tomato seedlings BR synthesis activity was observed mainly in apical and root tissues undergoing expansion. In flowers, synthesis activity was observed in the pedicel joints and ovaries, whereas in the fruits it was strongest during early seed development and was associated with the locular jelly and seeds. Quantitative measurements of endogenous BR indicated intense biosynthesis in developing tomato fruits, which were also found to contain high amounts of brassinolide. Moreover, brassinosteroids stimulate cell elongation and cell division, and BR has a specific effect of differentiation. Underling physiological pathways include modification of cell wall properties, effects on carbohydrate assimilation, allocation, and control of aquaporin activities. Brassinosteroids apparently coordinates and integrates diverse processes required for growth, partly via interactions with phytohormones setting the frame for BR responses. The aim of present study was investigation of the role of brassinosteroid on qualitative characteristics improvement of strawberry fruit.
Materials and Methods: In this research the effect of different concentrations (0, 0.25, 0.50, 0.75 and 1 mgl-1) of brassinosteroid sprayat different stages of strawberry growth (30 days after planting, first blooming, green fruit, and pink fruit) on some qualitative characteristics of the strawberry Paros cultivar was considered. This experiment was conducted asfactorial on a randomized complete block design with 4 replications in greenhouse conditions. Parameters such as total soluble solid, inducing sugar, titrable acidity, anthocyanin, phenol, fruit dry weight, fruit water and vitamin C were measured after….
Results and Discussion: Results showed treated plants by brassinosteroid, compared to control, improved fruit qualitative characteristics. So, brassinosteroid application increased total soluble solid, inducing sugar, titratable acidity, anthocyanin, phenol, dry weight, vitamin C.The best effective treatment and the best spraying time was brassinosteroid at 1 mgl-1 in pink fruit stage, respectively for qualitative characteristics improvement. Because, Brassinosteroid growth induced has been related to increase in RNA and DNA content, polymerase activity, protein synthesis carbohydrate fraction, reducing sugars, non-reducing sugars and starch. The yield increase in fruit trees may be related to improvement in the assimilation efficiency of photosynthetic carbon of the sprayed trees. The brassinosteroid application in wheat and mustard plants stimulated photosynthetic activity expressed by acceleration in CO2 fixing, increase protein biosynthesis and in mustard, increased photosynthetic rates that were directly related to growth and seed production. In accordance, researchers explained that BRs have been shown to enhance tracheary element differentiation, stimulate membrane hyperpolarization and ATPase activity, promote ethylene biothynsesis, control microtubule orientation and alter the mechanical properties of cell walls. In addition, brassinosteroid treatment greatly stimulated accumulation of photosynthates in the treated internode. This suggests a possible mobilization role for BR in the intact plant. As well as, in persimmon, grapevine and citrus, reported that BR compound showed, the practical effects for fruit setting. While, showed that brassinolide increased fruit weight and sugar content of oranges. In passion fruit orchards, brassinosteroid increased fruit number of plant and in turn yield per hectare and soluble solids content was 1° Brix greater than the control.
Conclusions: From this study, it is evident that the application of plant biostimulants such as brassinosteroid significantly improved qualitative characteristics. So, brassinosteroid application increased total soluble solid, inducing sugar, titrable acidity, anthocyanin, phenol, dry weight, vitamin C and effective treatment and best spraying was brassinosteroid at 1 mgl-1 at pink fruit stage for qualitative characteristics improvement.
Mesbah Babalar; Javad Hashemi; Yunes Mostufi
Abstract
Sulforaphane is a strong anticarsenogen compound which is produced in broccoli. It seems salt stress improves sulforaphane production via systemic acquired resistance. To obtain suitable salt concentration and for having more content of sulforaphane with controlling germination percentage, NaCl in 5 ...
Read More
Sulforaphane is a strong anticarsenogen compound which is produced in broccoli. It seems salt stress improves sulforaphane production via systemic acquired resistance. To obtain suitable salt concentration and for having more content of sulforaphane with controlling germination percentage, NaCl in 5 levels 0, 50, 100, 150, 200 mM (0, 4.53, 9.125, 13.68, 18.25 dS/m ) and salicylic acid in 3 levels (0,100, 200 µM) were examined. A logistic regression model was used to assess the effects of treatments on the maximum cumulative germination percentages, rate of increase, and germination lag times. Sulphoraphan and vitamin C were determind by HPLC method. Combination between salicylic acid and chloride sodium improved sulforaphane concentration. The 100 µM salicylic acid with 100 mM chloride sodium was the best treatment as the highest concentration of sulforaphane and vitamin C with perfect growth factors achieved in the treatment.
Mahsa Hamedani; Hossein Moradi; Ali Ghanbari
Abstract
The different factors such as harvest time, product handling, temperature and storage duration can be influenced on the different properties of citrus fruits and has considerable economic consequences. Therefore a factorial experiment based on completely randomized design with 3 replications was performed ...
Read More
The different factors such as harvest time, product handling, temperature and storage duration can be influenced on the different properties of citrus fruits and has considerable economic consequences. Therefore a factorial experiment based on completely randomized design with 3 replications was performed to evaluate the effects of harvest times (start of color change, 50% of color change and full color change of fruits), storage period (0, 25, 50 and 75 days) at 7ºC on total soluble solids, titrable acidity, ascorbic acid, total phenol content, flavonoid, antioxidant capacity, anthocyanin and activity of L-phenylalanin ammonia-lyase. The results showed that the harvest times and storage period had significant effect on the measured properties. So that the after 75 days of storage, peak phenylalanin ammonia-lyase activity and total flavonoid observed concomitantly with the accumulation of anthocyanin in ripe blood orange fruit but decreased antioxidant capacity and total phenol after 25 days of storage. Also, the highest vitamin C content and total soluble solids were measured in full ripening of fruits before storing and decreased after 75 days storage. So, according to changes in all of measured characteristics, the apropriate time of harvesting of Moro blood orange was the stage of commercial maturity of fruits.