Pomology
afsaneh Salehi; Fatemeh Nekounam; Farhang Razavi
Abstract
Introduction
Apple (Malus domestica) belongs to the Rosacea family and is one of the most important fruit trees in temperate regions. Apple fruit is a rich source of vitamins, sugars, organic acids, minerals, fibers, and bioactive compounds and is widely cultivated due to its pleasant taste, aroma, and ...
Read More
Introduction
Apple (Malus domestica) belongs to the Rosacea family and is one of the most important fruit trees in temperate regions. Apple fruit is a rich source of vitamins, sugars, organic acids, minerals, fibers, and bioactive compounds and is widely cultivated due to its pleasant taste, aroma, and texture. Due to the rising need for food and fiber per unit of land area, chemical fertilizers are becoming increasingly popular to increase yields from small plots of land. Chemical fertilizers pose major health risks and harm the environment when they are used in excess. Because of this, research in this area is heavily focused on finding and evaluating the efficiency of new products. One such approach is using biostimulants that can enhance the effectiveness of conventional mineral fertilizers. Plant biostimulants contain some nutrients (marine plant extracts, humic acids, amino acids and other natural products such as saponins and compost teas) that stimulate plant growth, even when administered in small amounts. Foliar application of seaweed extracts at 0.2% recorded maximum no. of fruits/tree, fruit weight, and yield/tree in valencia orange.
Materials and methods
In order to investigate the effect of biofertilizers on growth, yield and leaf nutrient contents of apple under climatic conditions of Zanjan, the experiment was carried out in a completely randomized block design with three replicates in 2023. Different concentration of seaweed (Alg; 0.075 and 0.15%), amino acid (GF Amino; 0.1 and 0.2%), humic acid (HA; 0.3%), commercial fertilizer Homarang, (Homa fert; 0.5%), combined chemical fertilizer (nitrogen, zinc and boron (Combinate fert; 1% urea, 0.3% zinc chelate and 0.1% boric acid)) and distilled water as a control were sprayed on the trees at 40 days after full bloom stage until runoff using a mechanical mist sprayer, and repeated three times with an 30 days interval until the physiological ripening of fruits. The experiment was carried out on 10-year-old Red Delicious apple trees grafted on M9 rootstocks. Shoot length, chlorophyll index, fruit drop percentage, yield efficiency, leaf area, leaf dry matter, leaf macro and micro nutrient were measured. The analysis of variance (ANOVA) and least significant difference test (P≤ 0.05) used to compare means within each sampling date. The Statistical analysis and standard error calculation were carried out using SAS software (V. 9.3).
Results and Discussion
The results showed that the foliar application of bio and chemical fertilizers significantly increased growth and fruit yield. So that, the highest increase in shoot length (39%) and leaf area (74.30%) compared to the control was obtained with application of seaweed 0.075%. Also, seaweed 0.15%, amino acid 0.2%, humic acid and amino acid 0.1% caused a significant increase in leaf area (42.02, 35.57, 22.27 and 16.20%, respectively) compared to the control. Foliar spray of seaweed, amino acid and chemical fertilizer increased chlorophyll index. The highest increase in chlorophyll index (50%) compared to the control was obtained with application of combined chemical fertilizer at 130 days after full bloom. These results are in agreement with the outcomes of other experiments conducted with seaweed on apple and on other crops such as grapevine. Therefore, this represents a further evidence of a possible role of seaweed extracts in the reduction of chlorophyll degradation and in delaying leaf senescence. The highest amount of nitrogen (1.66%), potassium (1.03%) zinc (150 mg g-1DW) and boron (82.5 mg g-1DW) and the lowest amount of phosphorus (0.44%) were obtained with application of combined chemical fertilizer. The highest value of iron was observed in leaf of trees treated with seaweed 0.15%, humic acid and commercial biofertilizer. Based on the results, it was observed that the amino acid, seaweed and combined chemical fertilizer have the greatest effect in reducing fruit drop (36.97, 33.37, 29.07%, respectively) compared to control) and increasing yield efficiency (respectively 2.75, 2.73 and 2.8 compared to control with 0.22 fruits No. cm-2 SCSA). These results partially are in agreement with another research performed on apple, where the use of a similar seaweed extract (Ascophyllum nodosum) was found able to induce a higher final yield. The hormonal components found in the extracts, particularly cytokinins, are assumed to be responsible for the increased yield in plants treated with seaweed. Previous studies mentioned that the application of biological fertilizers alone or in combination with the mineral fertilizers had positive influences on the leaf plate area, mean fruit weight and fruit chemical composition.
Conclusions
According to the results of this research, the use of biofertilizers, especially seaweed (0.15%) and amino acid (0.1%), are suitable and nature-friendly substitutes for chemical fertilizers and can play a significant role in increasing growth indices and yield of apples.