Abbas Joulani; Yavar Sharafi; Javad Sabbaghpour Heris
Abstract
Introduction: Sour cherry (Prunus cerasuc L.) is one of the most important stone fruit of Rosaceae family which have a high nutritional value. Based on FAO statistics, Iran was ranked the 3rd to 6th among the main sour cherry producer countries in the world. Most of the sour cherry cultivars are self-compatible, ...
Read More
Introduction: Sour cherry (Prunus cerasuc L.) is one of the most important stone fruit of Rosaceae family which have a high nutritional value. Based on FAO statistics, Iran was ranked the 3rd to 6th among the main sour cherry producer countries in the world. Most of the sour cherry cultivars are self-compatible, but self-incompatible cultivars have been reported currently. Allotetraploidy of sour cherry complicates the self-incompatibility segregation in the progeny, so this studies have been less accomplished in Iran. The sour cherry is an allotetraploid species which possibly stand up as a result of usual hybridization between the dwarf cherry P. fruticosa and sweet cherry P. avium. Similar to other species of the Prunus, the phenomenon of gametophytic self-incompatibility (GSI) happens in sour cherry. It prevents self-fertilization and facilitate fertilization with pollen of other genotypes within same species. Self-incompatibility consists of arresting pollen-tube growth in the pistil if the pollen tube contains the same S-allele that is present in the pistil. The phenomenon of self-incompatibility in plants of Rosaceae family is controlled by two genes at the S-locus. The specificity of the pistil is encoded by a gene responsible for the synthesis of the ribonuclease protein (S-RNase), whereas the specificity of the pollen is controlled by the gene encoding an F-box protein (S-haplotype-specific F-box protein – SFB) 3a). The tightly linked genetic unit of the pistil S-allele (SRNase) and pollen S-allele is called S-haplotype. Materials and Methods: In the present study, pollen-pistil compatibility relationships among some sour cherry cultivars and selected genotypes were investigated by controlled pollination and pollen tube penetration by fluorescence microscopy. Cultivars were include ‘Meteor’, ‘Mont Morency’, ‘Majarestani’ and ‘Mahalli’ so, genotype1 were selected. After controlled pollination fruit setting was studied and the pollen tubes growth along the style was studied using fluorescent microscope. Crosses were selected based on synchronized flowering time among cultivars and genotypes and included ‘Mont Morency’ × ‘Meteor’, ‘Meteor’ × ‘Mahalli’, ‘Meteor’ × ‘Majarestani’, ‘Meteor’ × ‘Genotype 1’, ‘Mont Morency’ × ‘Mahalli’, ‘Mont Morency’ × ‘Majarestani’, ‘Mont Morency’ × ‘Genotype 1’, ‘Mahalli’ × ‘Majarestani’, ‘Mahalli’ × ‘Genotype 1’ and ‘Majarestani’ × ‘Genotype 1’, respectively. For each cross, 2 branches were randomly selected in female cultivars in winter. On each branch, including 30 floral buds at ‘balloon stage’ were tagged and bagged to prevent the entrance of any foreign pollen. On the day of anthesis, ready-to-dehisce anthers were collected from male cultivar, maintained on a moist filter paper in petri plates at 4 ºC in refrigerator till they dehisce. Pollens from these anthers were used as a source of male gametes later. Once stigma turned receptive, cross-pollination treatments were carried out in the field as designed scheme for 12 successive days. After every 24 hrs. up to 120 hrs. post-pollination, 12 pistils per treatment were fixed in FAA (formaldehyde/glacial acetic acid/70% alcohol in the ratio of 1:1:18) for 24 hrs. Followed by washings with water to remove traces of alcohol, if any, and cleared in 5% KOH at 60 ºC for fluorescence microscopy. Staining regime, as described in Sabbaghpour et al. (2020) the number of pollen tubes in the upper and mid-parts of the style and in the ovary was employed to enable visualization of the pollen germination on the stigma. Percentage of pollen germination was determined as the proportion of pollen grains that germinated on the stigma to the total number present on a scale of 100. Pollen tube number at three levels was calculated as an average of 5 (n=10). For an easy understanding of growth pattern of pollen tubes inside the style and ovary, the stylar portion, which measures 1.8 ± 0.07 cm on an average, was divided into two parts: the middle and the base. A single, longitudinal incision was then carefully given on one portion of the style using a fine needle and made wide open. Pollen tubes inside the style were critically observed under fluorescence microscope at 100x magnification. Number of them was carefully recorded and data generated for different experimental sets. Results and Discussion: Results showed that maximum pollen tube number penetrated to the ovary and final fruit set were observed in cross ‘Mahalli’בMajarestani’. Also, minimum pollen tube in the ovary and final fruit set were observed in ‘Meteor’בMahalli’ and ‘Meteor’בGenotype 1’ crosses. Conclusion: Based on the obtained results cross-incompatibility was not observed among the studied cultivars and genotypes. Therefore, they could be planted in the sour cherry breeding programs and orchards establishment based on their blooming time.
Mehdi Ghesmati; Farid Moradinezhad
Abstract
Introduction: Sour cherry is one of the most strategically important horticultural products in the Khorasan Razavi province that proper nutrition can improve the performance of the plant. This fruit is rich in vitamins, antioxidants, and soluble fiber, which is very useful for lowering blood ...
Read More
Introduction: Sour cherry is one of the most strategically important horticultural products in the Khorasan Razavi province that proper nutrition can improve the performance of the plant. This fruit is rich in vitamins, antioxidants, and soluble fiber, which is very useful for lowering blood pressure. Proper nutrition is one of the important factors in determining the quantity and quality of the fruit. In arid and semi-arid regions, micronutrient elements availability is one of the factors that limits growth, yield, and quality of fruit trees , because absorption of nutrients being limited due to the alkalinity of the soil. So, the use of an appropriate method to provide the required nutrients by plants is necessary. Foliar application of nutrient is one of the important ways in the food supply for plants. Hence, spraying is an effective way to reduce nutritional disorders in plants. Therefore, the objective of this study was to evaluate the effect of foliar application of iron and zinc micronutrients on the yield and physicochemical properties of sour cherry fruit.
Materials and Methods: In order to investigate the effect of spraying of iron chelate and zinc sulfate on yield and qualitative characteristics of the sour cherry fruit, a factorial experiment was conducted in a randomized complete block design with 4 replications in the commercial orchard of Astan Quds Razavi, Mashhad, Iran. The first factor was spraying iron 6% Fe-EDDHA at 3 levels (0, 2 and 4 g l-1) and the second factor was spraying zinc sulfate at 3 levels (0, 2 and 4 g l-1). The treatments were applied in two stages, 20 days after the whole flowering stage and 20 days after the first spraying. Spraying chemicals was done in the morning when temperature and humidity were not high.. Fruit and leaves samples were collected, at the commercial maturity stage of fruit, from each tree include one kilogram of fruit and half kilogram leaves. Thereafter, healthy fruits and leaves of the same shape, size, and color were selected to determine the biochemical properties of fruit and chlorophyll leaves. In this experiment, 36 grilled cherry trees of 10 years old with a spacing of 3×4 m were used. The general conditions of the selected trees were similar to other garden trees, and irrigation (dripping), pest and disease control were applied uniformly to all treated trees. The studied traits included the fresh weight of fruit, dry matter percentage, fruit yield, fruit juice acidity, soluble solids, total antioxidant, trace related to chlorophyll content, iron and zinc concentration in leaves.
Results and Discussion: The results showed that different levels of iron chelate, zinc sulfate, and their interaction increased fruit fresh weight, dry matter percentage, fruit yield and chlorophyll traits. An individual application of 4 g l-1 of iron or zinc, and also their combination application showed the greatest values on evaluated traits In addition, the soluble solids, total antioxidant, and iron leaf values were only affected by different levels of chelate iron, which improved with increasing spraying levels of the studied traits. Sprayed with zinc sulfate could increase the concentration of zinc in the leaves but the acidity of juice was not affected by the treatments. The results showed that different levels of zinc significantly affected all quantitative traits of sour cherry fruit than iron chelate. However, spraying with iron chelate had a significant effect on the quality traits of fruit, including total soluble solids and total antioxidants. Moreover, the combination effect of chelate iron and zinc sulfate in comparison to their individual application had a better effect on the quantitative and chlorophyll traits of the cherry leaf. The highest increase in both zinc and iron content of leaf samples were obtained in trees that were treated with 4 g l-1 of zinc or iron solutions, respectively. The results show that foliar application of high concentrations of both chemicals increased zinc or iron content of leaf samples about 30% compared to the control. Thus, not only higher yield but also quality improvement of sourcherry fruit occurred in treated trees. Our results was in accordance with the findings of previous studies on different fruit tress like grapes, pistachio and orange. According to the results, it can be concluded that spraying with zinc sulfate and iron chelate during plant growth season can increase yield and improve the physical and chemical properties of the sour cherry fruit.