Medicinal Plants
Seyyed Amir Hossein Mousavi; F. Nekounam; Taher Barzegar; Zahra Ghahremani; Jafar Nikbakht
Abstract
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as ...
Read More
Introduction
Physalis peruviana L. is a short perennial shrub that is a member of the Solanaceae family. These fruits have many benefits for human health because of their nutritional and bioactive compounds (vitamins (A, B, C and K), essential fats and etc.) and reduced the risk of diseases such as cancer, malaria, asthma, hepatitis, dermatitis and rheumatism. Therefore, it has received special attention for cultivation all over the world. Increasing crop production and mitigating abiotic stresses are major challenges under extreme climatic environments and intense farming activities. Crop management strategies such as deficit irrigation can decrease soil evaporation, runoff, and plant transpiration, and increase water use efficiency (WUE) and water conservation. In addition to these practices, organic input, which includes the application of organic materials such as compost and humic substances, is an additional strategy that increases soil water retention and can potentially improve plant WUE. Water is crucial for agriculture and needs to be used effectively due to climate change and drought in Iran. For this reason, to adapt to water deficit scenarios, deficit irrigation applications are increasing in importance. Water availability is expected to be a growth limiting factor that would affect fruit yield in Physalis peruviana due to reduced flower set and elevated floral abscission rate.
Materials and Methods
In order to investigate the effect of humic acid on physiological characteristics, yield and fruit quality of Physalis peruviana under deficit irrigation conditions, a split plot experiment based on randomized complete block design with three replications was conducted during 2021. Treatments consisted arrangement of three levels of irrigation (starting irrigation at 100, 80 and 60% ETc (crop evapotranspiration)) and three levels of humic acid (0, 1.5 and 3 kg ha-1). The seeds of Physalis peruviana were sown in seedling trays contain peat moss. The seedlings were grown under normal conditions (25±2 °C/day and 20±2 °C at night with 60-65% RH). Plant height, total chlorophyll, fruit yield per plant, total soluble solid content, titratable acidity, vitamin C content and water use efficiency were measured. Statistical analyses were performed with SAS V9.3, and means comparison were separated by Duncan’s multiple range tests at p < 0.05.
Results and Discussion
The results showed that deficit irrigation significantly reduced growth, fruit yield, vitamin C and increased water use efficiency (WUE) and Total soluble solid content of Physalis peruviana. The soil application of humic acid significantly increased total chlorophyll, fruit quality and yield, and decreased leaf electrolyte leakage under normal and deficit irrigation, thus, the deficit irrigation 60 ETc% decreased the plant height by 18.6% and the fruit yield by 22.2% compared to irrigation 100 ETc%. The maximum plant length (200.3 cm), total chlorophyll content (2.42 mg g-1FW) and fruit yield (4793.3 kg ha-1) were observed in plants treated with 3 kg ha-1 humic acid under 100% ETc irrigation. The highest value of total soluble solid (12.6 B°), antioxidant activity (90.06 %) and WUE (1.23 kg m-3) were obtained with 3 kg ha-1 soil application of humic acid under deficit irrigation 60% ETc. The application of 3 kg ha-1 humic acid under 100 and 80 %ETc irrigation increased the fruit yield by 25% and 4%, respectively, compared to the control plants (non treated with humic acid) under irrigation100 ETc% and under deficit irrigation 60 ETc%, with decreasing 11% fruit yield, water consumption was saved by 40%. Soil and crop management practices that alter plant water and nutrient availability could affect the processes of crop evapotranspiration and WUE, which can influence the yield and fruit quality by changing the internal nutrient and water balance. Incorporating organic matter within a crop growth system either as leaf spray or soil mix is a complementary strategy to improve crop growth and WUE. By inducing antioxidant enzyme activities, HS could assist plants in stomata functioning, thereby closing stomata more efficiently under drought stress, which results in plant water conservation. The reason of the difference between WUE values probably appeared due to the differences on Physalis peruviana yield. WUE showed an upward trend with an increasing in irrigation.
Conclusion
Study results suggest that soil application of humic acid with increasing vitamin C, TSS and TA, improved fruit quality. According to the results, application of 3 kg ha-1 humic acid is suggested to improve fruit yield and quality of Physalis peruviana under normal and deficit irrigation conditions.
Medicinal Plants
Saeid Shiukhy Soqanloo; Mohammad Ali Gholami; Yousef Ghasemi
Abstract
IntroductionConfronting the crisis of water scarcity and the looming challenge of dwindling water resources is undeniably a grave concern. Consequently, the focus of agricultural science researchers has shifted towards the utilization of wastewater. One of the notable advantages of incorporating wastewater ...
Read More
IntroductionConfronting the crisis of water scarcity and the looming challenge of dwindling water resources is undeniably a grave concern. Consequently, the focus of agricultural science researchers has shifted towards the utilization of wastewater. One of the notable advantages of incorporating wastewater in agriculture is the potential to curtail the expenses associated with procuring irrigation water and employing chemical fertilizers. Materials and MethodsSari has a longitude and latitude of 53°01′ E and 36°33′ N, respectively, and its weather conditions are humid according to De-marten's climate classification. Its elevation is 21 above sea level and average annual temperature and precipitation, are17.9 ºC and 650 mm, respectively). In order to evaluate the effect of water stress and urban wastewater on the concentration of heavy metals, yield and some characteristics of basil, an experiment in a factorial format based on a completely randomized design with experimental treatments including; The first factor is the source of irrigation (I): [treated wastewater (TWW) and well water (WW)], and the second factor is water stress (S): [the lowest stress (S1, S2), medium stress (S3, S4) and severe stress (S5, S6)] were performed in three replications at the research farm of Sari University of Agricultural Sciences and Natural Resources (SANRU), Iran. Finally, the obtained data were analyzed using ANOVA of SAS9.2, and the SNK post hoc test was employed to compare treatment means. Results and DiscussionBased on the findings, Irrigation with wastewater increased plant height, stem diameter, fresh and dry weight compared to irrigation with well water. So that the highest plant height, stem diameter, wet and dry weight were related to irrigation with wastewater with 44.3 cm, 3.1 mm, 8.5 and 3.3 g, respectively. Also, the effect of using treated wastewater on chlorophyll a, chlorophyll b, total chlorophyll and carotenoids was significant (P ≤ 0.01). while it did not have significant effect on flavonoid, phenol and antioxidant activity. In the lowest stress, especially the S1 level, the amount of chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, flavonoid, phenol and antioxidant activity compared to the S6 level decreased by 63.3, 32.8, 40.7, 45.8, 46.3, 55.5, and 9.8%, respectively. while the highest amount of plant height, fresh weight, dry weight and stem diameter at the S1 level was observed with 48.6 cm, 11.5 g, 3.51 g and 3.4 mm, respectively. The result shown that the Pb and Cd concentration in basil under irrigation with wastewater was 3.4 and 2.5 mg.kg-1, respectively, which increased by 13 and 9% compared to well water. Water stress affected the Pb and Cd concentration, but the Cr and Ni concentration did not change significantly. The highest Pb and Cd concentration was related to high stress level S5 and medium stress level S4 and the lowest level was observed in the lowest stress levels (S1 and S2). Also, the results showed that the Pb and Cd concentration was affected by the interaction effect of irrigation source and water stress. Thus, the highest Pb concentration was observed in irrigation with wastewater and water stress levels S4 and S5 with 3.41 and 3.40 mg.kg-1, respectively, and the lowest was related to irrigation with well water and water stress level S1 with 2.2 mg.kg-1. The highest Cd concentration was related to irrigation with wastewater and stress levels S4 and S5 with 2.6 and 2.5 mg/kg, respectively, and the lowest amount were observed in well water irrigation and stress levels S1 and S2, with 1.51 and 1.50 mg.kg-1, respectively. while the Cr and Ni concentrations did not significant. ConclusionBased on the findings of this research, irrigation with treated wastewater and application of water stress had significant effect on the morphological and phytochemical characteristics of basil. while the use of treated wastewater was ineffective on the biochemical characteristics of basil and only water stress conditions affected their levels. The Pb and Cd concentration in basil increased under the influence of irrigation with wastewater and water stress levels. But this increase was lower than the standards authorized reported by the researchers and did not cause much concern. the results shown that the water stress levels S4 and S5 can be considered appropriate in water efficiency and recommend the use of treated wastewater in basil irrigation considering the authorized standards.
Yahya Selahvarzi; Maryam Kamali; Jafar Nabati; Hamid Ahmadpour Mir
Abstract
Introduction: Each year, with the onset of cold season and severe drop in temperature, the probability of frost bite and frost damage is a problem for landscaping plants. Many plant species, especially tropical and subtropical species, are damaged when exposed to frostbite, causing damage to ...
Read More
Introduction: Each year, with the onset of cold season and severe drop in temperature, the probability of frost bite and frost damage is a problem for landscaping plants. Many plant species, especially tropical and subtropical species, are damaged when exposed to frostbite, causing damage to their cells, tissues, and organs. Research has shown that by altering membrane properties during cold stress, metabolic balance is disturbed and with the increase in toxic metabolites, secondary damage to the plant can occur. At low temperature, decreases the efficiency of energy transfer to the center of the photosystem II. In addition, low temperatures are the main cause of the formation of reactive oxygen radicals. Also, lowering the temperature in the presence of light, due to the imbalance between light absorption and photosynthesis, increases the risk of light oxidation. Low temperature also reduces the activity of Rubisco. The amount of free proline in many plants increases significantly in response to environmental stresses such as frost stress, and stabilizes the membrane during cold stress.On the other hand, the use of some organic materials such as organic mulches increase temperature of the soil, and thus helps plant from frostbite. Use of organic mulch is widespread in agriculture due to the positive effect in soil temperature, weed control and moisture retention. Also, these mulches are effective in height, growth and flowering, early maturity and total yield of the products. Mulches in the warm seasons reduces soil temperature. Use of mulch can also help plants to withstand frostbite. Organic mulch decomposition in appropriate temperature and humidity conditions, liberates the nutrients gradually and provides for root plant and microorganisms of the soil. Organic mulches can reduce the effect of salt toxicity on plant growth and actively increase soil desalination. The most important benefit of mulch is the increase in soil temperature in the seed area, which accelerates the growth and yield of the product. Use of straw as mulch resulted in accelerated germination in cucumber. Use of straw mulch leads to an increase in temperature at night, thus protecting plants from temperature stress that has a positive effect on the growth and development of wheat.
Material and methods: In order to investigate the effect of freezing stress and using different types of organic mulch for Aquilegia plant, this experiment was conducted as a factorial experiment based on completely randomized design with four replications at Faculty of Agriculture, Ferdowsi University of Mashhad. The experimental treatments included four types of mulch (control (without mulch), 50% soil + 50% manure, 50% soil + 50% leaf needle + 50% soil + 50% rice bran) and five levels of freezing temperature (0, -5, -10, -15 and 20). Characteristics such as percentage of electrolyte leakage, relative water content, chlorophyll index and total chlorophyll, leaves number, leaf area, plant dry weight and proline leaf content were considered.
Results and Discussion: The results showed with decrease of temperature from 0 to -20 °C, stem diameter, leaf area and leaf number in bran mulch treatment decreased by 42.6%, 73.4%, 21.2% respectively, also stem diameter, leaf area and leaf number in mulch of leaf needle were 35.2%, 9/64%, 47.6%, in manure mulch were 20.20%, 46.4%, 7.8% and in the control of mulch decreased, 32.8%, 79.7%, 30.7%, respectively. At -5 °C, the amount of proline was 26% in the leaf and at -20°C, the amount of proline increased 50% compared to the control. Also, the lowest proline (0.73 μmol / g fresh weight) was obtained from the plants that treated with bran mulch. With application of, electrolyte leakage reached 63.6%, 68%, 61% and 57% in control conditions bran, needle and manure, respectively. In short, the least electrolyte leakage was observed in manure. On the other hand, when temperature dropped from 0 to -20 °C, the percentage of electrolyte leakage increased in Aquilegia. Relative water content of the leaf were 24% at 0°C, 38% at -15 °C and 23% at -20 °C. In terms of non-use of mulch, the relative water content was 36% and reached a 42% and 40% with application of manure and needle using mulch. By measuring the total carbohydrate found in Aquilegia leaf, it was observed that the amount of this trait was increased under frost stress. In general, although frost stress reduced the morphological traits of Aquilegia, use of organic mulch resulted in the improvement of these traits. The best results were observed in manure mulch.