Reza Najafi; Taher Barzegar; Farhang Razavi; Zahra Ghahremani
Abstract
Introduction: Eggplant (Solanum melongena L.) is an important non-climacteric fruit grown in tropical and subtropical regions. The total production in Iran and world for eggplants in 2018 were estimated 54077210 and 666838 tons, respectively, and Iran ranked fifth in the production of this product. The ...
Read More
Introduction: Eggplant (Solanum melongena L.) is an important non-climacteric fruit grown in tropical and subtropical regions. The total production in Iran and world for eggplants in 2018 were estimated 54077210 and 666838 tons, respectively, and Iran ranked fifth in the production of this product. The health-promoting attributes of eggplant are derived from the phytochemicals with good source of antioxidants (anthocyanin and phenolic acids), dietary fiber and vitamins. Fruit deterioration during long term storage is associated with appearance quality reduction, calyx discoloration, softening and pulp browning caused by the oxidation of phenolic compounds. Hydrogen Sulfide (H2S) is a flammable and colorless gas, that similar to carbon monoxide and nitric oxide, is known as third leading signaling molecule. It has been reported that H2S play an imperative role in the postharvest physiology and chilling injury of various fruits and vegetables. In recent years, exogenous phenylalanine (PA) application has been employed as a beneficial procedure for enhancing quality in fruits and vegetables by promoting higher phenols and flavonoids accumulation arising from higher PAL enzyme activity and proline accumulation exhibiting higher ROS scavenging capacity. Thus, the aim of this study was to investigate the postharvest application of H2S and PA on quality and postharvest storage of eggplant fruit during storage at 7 °C for 21 days. Material and Methods: Eggplant fruits (Solanum melongena cv. Hadrian) were harvested at commercially maturity stage in Jun 2019 from a greenhouse in Hashtgerd city, Iran. Fruit selected for uniform size, shape, and color, and immediately transported to the laboratory. They were divided into seven parts for the following treatments: control (0), hydrogen Sulfide (H2S) at 0.1, 0.2 or 0.3 mM and phenylalanine (PA) at 2.5, 5 or 7.5 mM. Each treatment was done in three replicates, consists of 24 fruits from each replicate, and then randomly divided into four groups include six fruits. One group was analyzed 24 hrs. after harvesting and another groups stored at 7 ± 1 °C and 85% RH for 21 days. At 7-day intervals, one group was taken at random and transferred for one day at 20 °C (shelf-life), and subjected to physicochemical analysis. For H2S fumigation, fruit was placed at the bottom of a sealed 15 L container with different aqueous sodium hydrosulfide (NaHS) solution concentrations for 10 min, and for PA treatments, the fruits were immersed in 10 L of fresh phenylalanine solution for 10 min and in distilled water as a control. The fruits were allowed to completely dry at room temperature before storage. Results and Discussion: The results showed that fruits treated by PA and H2S exhibited higher fruit firmness, chlorophyll, anthocyanin, total soluble solids (TSS), vitamin C, pH and titratable acidity (TA) accompanied by lower weight loss and chilling indices during storage at 7 ºC for 21 days. In control eggplant fruits, fruit firmness (24.2%), chlorophyll (45.8%), vitamin C (34.1 %), anthocyanin content (66.2 %) and TA (44.8) decreased, and weight loss (7.5 %), TSS (8.2%) and chilling indices (4.5 %) increased during 21 storage time. The maximum fruit firmness (1.37 and 1.34 kg cm-2), anthocyanin content (5.02 and 4.2 mg L-1) and TA (18.67 and 1.37 %), and the lowest weight loss (3.67 and 3.7 %) and chilling index (1.6 and 1.3 %) was found in fruits treated with H2S at 3 mM and PA at 7.5 mM during storage at 7 °C for 21 days, respectively. It has been reported that texture correlates with firmness and higher firmness is a characteristic indicator of good texture during postharvest storage of fresh products. Soluble solid contents, titratable acidity (TA) and sugars have been known as important attributes contributing in overall sensory quality of fruits and vegetables. Development of the chilling injury disorder significantly reduces quality of fruits and vegetables due to diminished consumer’s acceptance. So, start of chilling injury symptoms eventually becomes economically critical postharvest constraint that defines the storage life potential of the products. Decline chilling injury in responses to H2S and PA treatments may resulted from higher ROS scavenging enzymes SOD, CAT, APX and POD activity and proline, phenols and flavonoids accumulation giving rise to conferring chilling tolerance. Conclusion: According to results, PA at 7.5 mM and H2S at 3 mM had the highest positive effect on maintain firmness and fruit quality and reducing weight loss and chilling, therefor postharvest treatment of PA and H2S can be proposed to improve fruit quality and postharvest life during storage period.
Fardin Ghanbari; Mohammad Sayyari
Abstract
Introduction: Due to its low level of calorie and being as an excellent source of C and A vitamins as well as containing lycopene as a powerful antioxidant, Tomato (solanum lycopersicum, 2n=2 x=24), is extensively consumed in the world. According to the statistics presented in 2013, following China, ...
Read More
Introduction: Due to its low level of calorie and being as an excellent source of C and A vitamins as well as containing lycopene as a powerful antioxidant, Tomato (solanum lycopersicum, 2n=2 x=24), is extensively consumed in the world. According to the statistics presented in 2013, following China, United States, Turkey and Egypt, Iran ranked sixth in tomato production (6174182 kg per year) world tomato production. Similar to other tropical crops, tomato is sensitive to chilling stress. The chilling stress is considered as one of the environmental factors influencing growth and development of many plants including tomato. Applying different environmental conditions and cultivation techniques within transplant production can mitigate the chilling stress of seedlings. The seedling hardening is one of the simple technique being employed to physiological characters of plant, so as to induce subsequent stress resistance. This phenomenon is so-called cross tolerance and it means that exposing plants to stressful conditions can induce plant tolerance to upcoming stresses. Therefore, the objective of our study was to investigate the effect of drought hardening and chilling stress on tomato plant growth and productivity in field condition.
Materials and Methods: This experiment was conducted in greenhouse and research laboratories of agricultural college of Bu Ali Sina University. First of all, the seeds of tomato cv. C.H Falat, were sown in pots filled with perlite and vermiculite (ratio 2:1) and then maintained under natural light and at 25±2°C / 18±2°C (day/night). At four-leaf full development stage, seedlings were subjected to seven-day drought stress simulated with polyethylene glycol 6000 (PEG) at three levels: control (0% PEG), moderate drought stress (10 % PEG equaling to 0.18 Mpa osmotic potential) and severe drought stress (20% PEG equaling to 0.57 Mpa osmotic potential). After employing different levels of drought stress and consequently placing them in recovery for 48 h, they were exposed to chilling stress and non-chilling stress condition. For imposing chilling stress, the seedlings were transferred into growth chamber under 3°C for 6 days and 6 h per day. After receiving chilling stress treatments, the produced seedlings, were planted in the field.
Results and Discussion: In the present study, drought pretreatment reduced the effects of cold stress on fruit yield and quality. Results revealed that, the growth and yield of tomato plants were significantly increased by drought stress pretreatment in field condition. Herein, Seedlings without receiving drought pretreatment slowly grew and gained lower yield than those receiving drought. Some traits such as higher fruit size and shelf life and low number of decayed end blossom fruits were gained by drought application. The highest growth and yield rates were obtained through 10% PEG. These results indicate that drought stress at seedling stage increases the yield of tomato without harmful effects on fruit quality. The results showed that in 0% PEG treatment (control), chilling stress increased the number of days for flowering and fruiting, which indicates the growth retardation in this plant under cold stress condition. Drought pre-treatment using PEG increased the thickness of the pericarp and its post-harvest life, which may indicate the maintenance of the effects of initial stress in all stages of vegetative and reproductive growth. It has been reported that cold stress directly affects the growth potential of plants that interfere with the proper production of plants by disrupting metabolic reactions and indirectly by preventing the absorption of water by plants and oxidative stress (Hussain et al., 2018). In the present study, pre-treatment of drought reduced the destructive effects of chilling stress on fruit size. These results show that pre-treatment of drought (especially 10% PEG) had a significant effect on increasing fruit size and preventing its fruit yield reduction due to cold treatment. Similarly, Paradosi et al. (1987) reported that water stress in tomato plants increased its tolerance to cold and maintained the growth of tomato plants and its yield in cold greenhouse conditions. So far, there have been no reports of interactions between environmental stresses on fruit size, but the effects of drought stress on tomato fruit have been studied.
Conclusion: In general, the results of this experiment showed that the effects of drought pre-treatment on seedling remain in the next stages of tomato growth and can have beneficial effects on growth and yield of tomato in field conditions.