Growing vegetables
Saeid Khosravi; Maryam Haghighi; Monireh Menatkhesh
Abstract
Introduction
Agaricus bisporus is the important mushroom that is cultivated industrially and due to its medicinal properties, it has special nutritional importance in the food basket of the people of the world. It is predicted that with increasing population and changing consumption patterns, ...
Read More
Introduction
Agaricus bisporus is the important mushroom that is cultivated industrially and due to its medicinal properties, it has special nutritional importance in the food basket of the people of the world. It is predicted that with increasing population and changing consumption patterns, food will be one of the most critical issues in the country soon and protein poverty will be one of the most critical leading crises. Mushroom can be the best choice for the supply of essential human protein because they produce protein-rich foods using agricultural waste. Mushrooms are also rich sources of essential amino acids, vitamins (B2, niacin and folate), and minerals. White button mushroom production accounts for about 35% of the total world production of edible mushroom. The production of edible mushroom (Agaricus bisporus) depends on planting, amount of spawn consumed, growing conditions, species and media of cultivated edible mushroom.
Material and methods
The present study aims to investigate the effect of vitamins B and C on growth, yield of button mushroom and its postharvest life. The study was performed in two separate experiments in the mushroom factory and storage. The experiment was performed in the mushroom factory located in Khomeini Shahr city of Isfahan province and experiments related to the laboratory section and the research laboratories of the Faculty of Agriculture, Isfahan University of Technology. In this study, a box culture system was used to grow mushrooms. For this purpose, in order to prepare the culture media and prevent the mixing of culture media containing different treatments, cardboard plastic was used to make the boxes. First, in order to eliminate the pathogens, tiram fungicide is used for 24 hours. Cartonoplasts were then placed at specific distances of 30 cm by 30 cm. To eliminate pathogens, the composts were steamed in an autoclave at 121 ° C at a pressure of 1.34 atmospheres for 15 minutes and boarded and treatments were applied. Treatments include 3 levels of vitamin C (0, 3 and 6 mg / kg) (C0, C1 and 2C), 3 levels of vitamin B (0, 0.5 and 1 mg / kg) (B0, B1 and B2) was performed by factorial experiment in a randomized complete block design with 4 replications (40). Vitamin B complex, including vitamins B1, B2, B6, B12 and B9 were prepared in a ratio of 1: 2: 2: 5: 4. The treatments were applied to the composts used in the bed after boarding and before applying topsoil. When the mushrooms reached the commercial harvest level, i.e., the cap was 2.5 to 8 cm, but the cap was not opened, the factors related to vegetative growth were measured as follows. The number of mushrooms during the harvest period was counted for all treatments and at the end of the period, the average number of mushrooms per unit area was calculated. Cap diameter and base of each fungus were measured with a caliper during the harvest period for all mushrooms. In order to estimate yield, the mushroom harvested daily were weighed from all replications of each treatment.
Result
The results showed that the nutritional supplements used in this study were effective in increasing vegetative growth and yield and the highest number of mushrooms and dry weight were related to vitamin treatment. The interaction effect of vitamin C and vitamin B on the quantitative and qualitative characteristics of edible mushrooms at harvest time showed that dry weight increased at C1 and C2 with increasing concentration of B2 and decreased at C0. Cap diameter increased at all concentrations of vitamin C with increasing concentration of B2 and C2 had the highest amount. Base diameter was highest in C1 with increasing all concentrations of B vitamins compared to other treatments and lowest in C2 with concentration of B0. Ion leakage in C2 increased with increasing concentration of B2 and decreased in C0 and C1. The number of mushroom in C1 and C2 decreased with the addition of vitamin B and the highest number in C2 increased with the concentration of B0. The weight of grade 2 at C0 and C1 decreased with increasing concentrations of B2 and B1, respectively. Total yield was increased at all concentrations of vitamin C using B1. The highest total yield was observed in C1 treatment with B2 application. Total performance in control and C2 treatment decreased with increasing B2. Harvest time hardness increased in all three vitamin C treatments by increasing the concentration of B1, but increasing the concentration of B2 compared to B1 decreased. The highest increase was observed in the control treatment of vitamin C and the highest decrease was observed in the treatment of C2. Harvest time whiteness increased in C0 and C2 with the addition of vitamin B and decreased in C1. In general, in the control treatment of vitamin C in the two concentrations of B1 and B2, the highest amount of whitening time was observed. The highest amount of ash was observed in C2 with B2 application. In the postharvest experiment, the highest hardness after 32 days of storage was related to vitamin B treatment and the highest postharvest hardness, postharvest whiteness, and whiteness after 32 days of storage were related to vitamin C treatment. Also, the results of comparing the mean of interactions showed that the total yield in all three vitamin B treatments increased with the application of 3 mg/kg. The results of the second experiment showed that the rate of water loss in C1 with the addition of B2 concentration was the highest and in the control treatment was the lowest. The hardness increased after 32 days of storage in the control treatment and C2 with the application of B1, but decreased in C1 and C2 with the use of B2. The highest amount of whiteness was observed in C1 after 32 days of storage by increasing the concentration of C1, which was not statistically significant with the control treatment. It seems that there is not much difference between different concentrations of vitamin C in vegetative and postharvest fungal traits, but better results have been obtained by increasing the concentration of vitamin B. The results indicate that the effect of supplements on the yield of edible mushrooms is different so that adding appropriate amounts of supplements to the culture medium significantly increases crop yield. The results of this study showed that vitamin C1 treatment resulted in the highest dry and total weight, cap diameter, base diameter, and number of mushrooms. Wetter and drier cap and base diameters, ion leakage and water loss, were the highest in vitamin B2 treatment.
Growing vegetables
Mahboobeh Zamanipour
Abstract
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area ...
Read More
Introduction: Tomato (Solanum lycopersicum L.) is a perennial plant, which is rich in antioxidant compounds, lycopene, polyphenols and vitamin C. Iran, with production of 5.24 million tons, is ranked sixth in the world in tomato production. According to the latest FAO reports in 2019, the total area under tomato cultivation was 121203 hectares, with an average yield of 43.30 tons per hectare, and annual production of 5248904 tons. Vitamins are made from natural ingredients and are suitable for the growth, function and improvement of plant nutrition. The aim of this study was to investigate the effects of different levels of pyridoxine (50, 100 and 150 mgL-1), thiamine (50, 100 and 150 mgL-1) and folic acid (50, 100 and 150 mgL-1) and the combination of these vitamins on the plant growth, yield and chemical properties of tomatoes.
Materials and Methods: This study was conducted as randomized complete block design with three replications in the greenhouse of Iranshahr University during the years 2019 to 2020. The tomato cultivar was Delphus, the seedling of which was purchased from Pakan Bazr Isfahan Company. In August, with the beginning of the tomato planting period in the greenhouse, seedlings were planted and the harvest lasted until December. Seedlings were planted in rows of 75 cm wide and 40 cm apart. Irrigation was performed in the greenhouse with a drip system. The first irrigation was carried out immediately after planting and the second and third irrigations were carried out one day later for one hour and the subsequent irrigations were carried out in proportion to the growth of seedlings, every other day, every four days. At the 7-8 leaf stage, the plants were guided vertically on the thread. The greenhouse temperature was 25 to 32 °C during the experiment and 18 to 24 °C at night and the relative humidity was about 50%.
Results and Discussion: The results showed that all used concentrations of pyridoxine, thiamine and folic acid increased the growth parameters compared to the control, so that the highest plant height (271 cm), stem diameter (7 cm), number of leaves (31) fresh weight (502 g) and dry weight (341.66 g) were produced at a concentration of 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid. Interaction of B vitamin levels at low, medium and high levels had a significant effect on the reproductive parameters of tomato plants, so that the highest number of flowers (41.33), number of fruits (29.55), number of clusters (9.77), fruit diameter (22.44 mm), fruit fresh weight (158 g) and fruit dry weight (10.81 g) and yield (5688.9667 g/plant) at a concentration of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 was observed per liter of folic acid. Increasing of yield can be due to increased nutrient uptake and assimilation, and increased growth due to the presence of vitamins. Similar results by El-Gharmany et al. (2005) stated that foliar application of vitamins (B1, B6 and B12) in appropriate concentrations in cowpea significantly increased the number of pods per plant and total yield compared to the control. Shabaly and El-Ramady (2014) and Shabana et al. (2015) found that some natural ingredients have increased yield of garlic and tomatoes. Also, all concentrations of pyridoxine, thiamine and folic acid used increased biochemical parameters compared to the control. Maximum pH (4.78), acidity (0.28%), soluble solids (3.93%), lycopene (2.64 mg/100 g fresh weight), total phenol content (66.66 mg/100 g fresh weight, vitamin C (13.36 mg/100 g fresh weight), chlorophyll a (1.98 mg/g fresh weight), chlorophyll b (0.98 mg /g fresh weight) and carotenoids (3.33 mg/g fresh weight) were obtained by using a combination of 100 mgL-1 pyridoxine, 100 mgL-1 thiamine and 100 mgL-1 folic acid. Foliar application of vitamin treatments may play an important role in physiological and metabolic processes that affect the process of photosynthetic metabolism and lead to an increase in soluble solids and minerals. The interaction of vitamins improves the action of biochemicals on amino acid metabolism and nucleic acid synthesis. However, Abdel-Halim (1995) reported that foliar application of some vitamins improved leaf growth, increased chlorophyll, chemicals, and internal hormones in tomatoes during the winter. El-Ghamriny (2005) reported that foliar application of B vitamins (B1, B6 and B12) increased leaf chlorophyll in cowpea compared to the control, and Burguieres et al. (2007) found that folic acid at a concentration of 50 mgL-1 increased minerals in peas. Hendawy and Ezz El-Dinn (2010) reported that vitamin B complex as a coenzyme in enzymatic reactions such as carbohydrates, fatty acids and proteins involved in photosynthesis and respiration. In addition, Abd El-Hakim (2006) reported that some antioxidants improve biochemical properties in some beans.
Conclusion: The results showed that the use of pyridoxine, thiamine and folic acid vitamins alone or in combination with each other improved the growth, reproductive and biochemical characteristics of Delphi greenhouse tomatoes. The highest growth rate, yield and biochemical properties were obtained at 100 mgL-1 pyridoxine + 100 mgL-1 thiamine + 100 mgL-1 folic acid.