Maryam Haghighi; Atena Sheibanirad
Abstract
Introduction: Plants are constantly faced with abiotic and biotic stresses during their whole life. Abiotic stresses are various adverse environmental factors, including drought, high salinity, heavy metals, cold or heat shock, and ozone. Resulting in dehydration and osmotic stress, drought has caused ...
Read More
Introduction: Plants are constantly faced with abiotic and biotic stresses during their whole life. Abiotic stresses are various adverse environmental factors, including drought, high salinity, heavy metals, cold or heat shock, and ozone. Resulting in dehydration and osmotic stress, drought has caused a dramatic reduction in crop production globally. Grafting can reduce the content of Malondialdehyde (MDA); prevent the accumulation of reactive oxygen species (ROS); increase activities of antioxidant enzymes; and maintain fresh and dry weights, grain yield, and relative water content in a variety of plants in response to drought stress. On the other hand, a range of abiotic and biotic elicitors can confer tolerance to drought stress in plants. Grafting of herbaceous fruit vegetables can reduce detrimental effects of biotic and abiotic challenges and cultural practices. Grafting can increase yield of cucurbits, initiate shoot growth, aid in resistance against nematodes and viruses, withstand high and low temperatures, improve nutrient and water absorption, resist against high concentration of salt, drought and waterlogging stresses. Grafting elite commercial cultivars onto selected vigorous rootstocks is a special method of adapting plants to counteract environmental stresses. Grafting is currently regarded as a rapid alternative tool to the relatively slow breeding methodology for increasing the environmental-stress tolerance of fruiting vegetables. Potential approach to reduce losses in production and improve water use efficiency under drought conditions in high-yielding genotypes would be to graft these varieties onto proper rootstocks capable of reducing the effect of water stress on the shoot and to increase tolerance to abiotic stresses. Cucumber (Cucumis sativus L.) is one of the main greenhouse vegetable crops widely grown in Saudi Arabia. The total greenhouse area for cucumber production in 2013 was 2605 hectares produced 236,087 tons. Major factor influencing growth and yield of cucumber is water quantity. The effects of different rootstocks on plant growth, yield, fruit quality and water consumption in cucumber was studied. The highest yield was obtained from 9075 (19.02 kg m2), which was 24.5 and 23.5% higher than in the non-grafted and self-grafted treatments, respectively. The plant height also increased with the use of rootstocks. The increase in the dry weights of the leaves and fruits depended on rootstocks. They concluded that grafting improved plant growth and yield depending on the rootstock genotype. Grafting has the potential to be as a strategy to increase the tolerance of plants to promote water use efficiency (WUE). The present study was aimed to evaluate the grafting biochemical and physiological effects on inducing drought stress resistance in cucumber. Materials and Methods: This experiment was conducted in complete randomized design with three replications and treatments are included grafted and ungrafted plants, and water potential level 0 (control), -0.4 and -0.8 MP. The Isfahan endemic cucumber specious as a scion with the hole method grafted on Ferro rootstock. The physiological and growth traits were measured. Photosynthesis (stomata conductance, photosynthesis, water use efficiency), growth (root and stem growth), and antioxidants (SOD, POD, protein) parameters, and transpiration were measured. Results and Discussion: Result indicated that grafting with increasing root nutrient absorption and its development drought stress resistance improved. Although, grafting reduced potassium content. Grafting and the interaction of rootstock ×scion impressed many morphological and physiological characteristics. Under stress condition, some features improved plant water relationship, growth and development. Gas exchange indices like photosynthesis, transpiration and stomatal conductance were lower in grafted plant compare to ungrafted plants. Proline content was significantly increased in grafted treatments compare to ungrafted ones. Higher potassium under -0.8 MP in grafted plants showed the maintenance osmotic stability and potassium hemostasis were the draught stress mechanism in resistant rootstocks. Conclusion: Finally, grafting as an efficient method to increase cucumber yield and improve drought resistance recommend. These results suggest that the use of drought tolerant Cucurbita rootstock can improve cucumber photosynthetic capacity under drought stress and consequently crop performance. The results revealed that grafted plants had better vegetative growth than ungrafted (control) ones. Furthermore, photosynthetic parameter, antioxidant activity and fresh and dry weight of stem and leaves were improved, but grafting had no significant effect on fruit quality and yield. In conclusion it is recommended that grafting procedure in some crops include cucumber should be done only after assuring the benefits and risks of grafted seedlings.
Mina Nurzadeh Namaghi; Gholamhossein Davarynejad; Hossein Ansari; Seyyed Hossein Nemati; Ahmad Zarea Feyzabady
Abstract
Introduction: Mulching is a useful practice with the potential of conserving moisture, reducing evaporation, modifying soil temperature, and improving aeration as well as releasing nutrients in the soil profile. Mulching involves the use of organic materials (e.g. crop residues, straw, grasses, and farmyard ...
Read More
Introduction: Mulching is a useful practice with the potential of conserving moisture, reducing evaporation, modifying soil temperature, and improving aeration as well as releasing nutrients in the soil profile. Mulching involves the use of organic materials (e.g. crop residues, straw, grasses, and farmyard manure) or inorganic and synthetic materials (e.g. polyethylene sheets, and gravels). Application of mulch can notably as a soil management method influence agricultural crop production despite the limited amount of water available in arid and semi-arid areas.
Materials and Methods: Field studies were conducted in a randomized complete block design with five replications for two years in 2014 and 2015 at Feyzabad city, Iran (34° 40´ N, 58° 25´ E). The aim of the study was to investigate the effects of different mulching treatments on physiological traits of pistachio (Pistaciavera L.) in relation to soil temperature and moisture variations. The treatments were: M1 (whitepolyethylene film mulch covered with two centimeter of soil with width cut), M2 (white polyethylene film mulch covered with two centimeter of soil with circular cut), M3 (green polyethylene film mulch which was as a single layer pulled on water strip so that irrigation water passes under the coverage), M4 (woodchip mulch), M5 (barley residue mulch), and CK (control or no mulching). The measurement (soil moisture and temperature, stomatal conductance and leaf temperature) was carried out periodically on the central trees (4 trees per treatment) every 12, 24 and 36 days after irrigation between 12-15 pm from early-May to late September. The data obtained from the experiment were subjected to an analysis of variance (ANOVA) by using SAS 9.1 software. Difference between means was compared using least significant difference test (LSD) at 5% level (p ≤ 0.05).
Results and Discussion: The results showed that the mean soil moisture percentage in all mulches especially plastic mulches was higher compared to the control over two years of experiment. During the two years of experiment, treatments of M1, M2 and M3 with 35.2, 35 and 38.9 °C and treatments of M4, M5 and CK with 28.8, 29.6 and 32.8 °C indicated the highest and lowest average soil temperature at 20-30 cm soil depth, respectively. Also, similar results were observed at 50-60 cm soil layer. M3 and CK treatments with 47.7 and 41.1 mmol/m-2s-1 had the highest and lowest mean stomatal conductance, respectively. The mean values of leaf temperature during the growing period under M1, M2, M3, M4 and M5 treatments were 2.2, 1.9, 2.4, 1.7 and 1 °C in 2014, and 1.8, 2.2, 2.2, 1.5 and 1.1 °C in 2015 lower than CK (control) treatment, respectively. According to correlation results significant difference was not observed between stomatal conductance and soil moisture, but the relationship of this parameter with soil temperature and relationship between leaf temperature with soil moisture and soil temperature were significant. Thus, this results demonstrate that stomatal conductance and soil temperature weresignificantly affected by soil temperature, so that an increase in soil temperature to 40 °C, canbe improved these traits if other soil and climatic factors werenot limiting. The results also showed that M3 mulch (plastic mulch on soil surface) despite the higher soil water storage due to providing of soil high temperatures, can be leads to moisture stress in heavy cropping year.
Conclusions: The results of thisstudy showed that organic and inorganic mulches improved the soil moisture content throughout the two growing seasons, thus reduced negative effects of water shortage. Mulch treatments indicated smaller fluctuations in soil temperature compared to CK (control) treatment, possibly due to insulating against heat radiation. The results of our study suggested that increase in soil temperature in M3 treatment, despite higher water storage, had limited impacts on improving stomatal conductance and leaf temperature from early July in the second year. Thus, it seems that high soil temperature in this treatment in ON year that trees' water and nutrients requirement is higher than OFF year acts as a limiting factor and restricts absorption of water and nutrients, resulting in the decrease of physiological activity of trees. Generally, it is conclude that white polyethylene films covered with soil especially M2 and organic mulches due to providing optimum soil temperature, preserving soil moisture and lower cost can be better management options to be applied in pistachio orchards especially in arid and semiarid areas, where traditional irrigation methods with high evaporation level are used.