واکنش فیزیولوژیکی گلابی درگزی(Pyrus Communis cv. Dargazi) به تنش شوری (کلرید سدیم) در شرایط درون شیشه ای

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه زنجان

2 پژوهشکده بیوتکنوژی کشاورزی

چکیده

به منظور بررسی اثرات شوری بر طول شاخه، تعداد برگ، تعداد جوانه جدید، کلروز، نکروز و غلظت عناصر سدیم، کلر، پتاسیم، نیتروژن و فسفر بر ریزنمونه های تهیه شده از کشت نوک شاخساره گلابی رقم درگزی ( Pyrus Communis cv. Dargazi) آزمایشی شامل تیمارهای سطوح مختلف شوری؛ صفر (شاهد)، 40، 80، 120، 160 میلی مولار کلرید سدیم در قالب طرح کاملاً تصادفی با چهار تکرار در سال 1391 در دانشگاه زنجان انجام شد. بعد از 6 هفته دوره کشت درون شیشه ای تحت تنش شوری، صفات ذکر شده مورد ارزیابی قرار گرفتند. طول شاخه و تعداد برگ با افزایش سطح شوری کاهش و تعداد برگ کلروزه و نکروزه تحت تأثیر شوری بطور معنی داری افزایش یافتند. بعلاوه با افزایش سطح شوری غلظت نیتروژن و پتاسیم بافت گیاه کاهش و میزان سدیم و کلر بافت افزایش یافت. غلظت فسفر بافت گیاهی تحت تأثیر تنش شوری قرار نگرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Physiological Response of Pear (Pyrus Communis cv.Dargazi) to Salinity Stress Under In vitro Conditions

نویسندگان [English]

  • fateme zafari 1
  • Mohammad Esmaeil Amiri 1
  • Ali Vatanpour Azghandi 2
1 University of Zanjan
2 Agricultural Biotechnology Research Institute
چکیده [English]

This study was conducted to find out the influence of in vitro salinity on growth parameters shoot length, number of leaves, number of new buds, the chlorophyll, chlorosis and necrosis and absorption of sodium, chloride, potassium, nitrogen and phosphorus of pear (Pyrus communis cv. Dargazi) in vitro propagated shoots. The experiment was conducted as a complete randomized design with 5 salinity levels; (control), 40, 80, 120 and 160 mM of sodium chloride in 2013 at Zanjan University, Zanjan, Iran. Different mentioned parameters were assessed after 6 weeks of culture. Shoot length and leaf number per explant decreased and number of chlorotic and necrotic leaves increased with increasing salinity. Increasing salinity levels also decreased nitrogen and potassium content of plant tissues while their sodium and chloride contents increased. Phosphorus was not affected by salinity.

کلیدواژه‌ها [English]

  • Pear
  • salinity
  • growth
  • Nutrient uptake
  • In vitro conditions
1- احیائی م. و بهبهانی‌زاده ع. 1372 . شرح روش ‌های تجزیه شیمیایی خاک و گیاه. موسسه تحقیقات آب و خاک، تهران. جلد اول، نشریه شماره 893.
2- منیعی ع. 1379. گلابی و به و پرورش آن‌ها. چاپ دوم. شرکت انتشارات فنی ایران. 105 ص.
3- Alizadeh M., Singh S.K., Patel V.B., Bhattacharya R.C., and Yadav B.P. 2010. In vitro responses of grape rootstocks to NaCl. Biologia plantarum, 54 (2): 381-385.
4– Bohnert H.J., Nelson D.E., Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell, 7: 1099-1111.
5– Cheeseman J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiology, 87: 57-550.
6 – Erturk U., Sivritepe N., Yerlikaya C., Bor M., Ozdemir F., and Turkan I. 2007. Response of the cherry rootstock to salinity in vitro. Biologia Plantrum, 51(3): 597-600.
7 – Gebauer J., El-siddig K., Salih A.A., Ebert G. 2004. Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Hort Science, 1-8: 103.
8– Hasegawa P.M., Bressan R.A., Zhu J.K., Bohenett H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiol. Plant Biology, 51: 463-499.
9– Heuer B. 1999. Osmoregulatory role of proline in plants exposed to environmental stresses. In: M. Pessarakli (ed.) Handbook of Plant and Crop Stress. Pp. 675-695.
10- Jalili Marandi R. 1998. Study on the tolerance of 10 grape cultivars at different concentration. Iranian Journal of Agricultural Sciences, 29(3): 525-533.
11– Karakas D., Lobianco R., Rieger M. 2000. Association of marginal leaf scorch with sodium accumulation in salt stressed peach. Hortscience, 35: 83-84.
12– Levitt J. 1980. Responses of Plants to Environmental Stresses. Academic Press, New York, 2: 607.
13- Munns R. and Tester M. 2008. Mechanisms of Salinity Tolerance. Plant Biol, 59: 651-81. Homeostasis in NaCl stress environments. Plant Physiology, 109: 735-742.
14– Olmos E., and Hellin E. 1996. Mechanisms of salt tolerance in cell line of Pisium sativum. Biochemical and physiological aspects. Plant Science, 190: 37-45.
15– Sadasivam S. and Manickm A. 2008. Biochemical Method. New Age International, 5: 270.
16– Sayed M., Zain Hasan N., and Nur Suraya A. 2007. Effect of salinity on growth, proline accumulation and malat content of pine apple (Ananas comosus (L.) Merill. under tissue culture condition. Malays. Applied Biology, 36 (2): 57-63.
17– Schachtman D., and Munns R. 2002. Sodium accumulation in leaves of Triticum s pecies that differ in salt tolerance. Australian Journal. Plant Physiology, 19 (3): 331-340.
18- Shiyab M.S., Shibli R.A., Mohammad M.M. 2003. Influence of sodium chloride salt stress on growth and nutrient acquisition of sour orange in vitro. Journal of Plant Nutrition, 26 (5): 985–996.
19– Singh S.K., Sharma H.C., Goswami A.M., Datta S.P., Sing S.P. 2000. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Bioligia Plantarum, 43: 283-286.
20– Sotiropoulos T.E., Dimassi K.N., Tsirakoglou V., and Therios I.N. 2006. Responses of two Prunus rootstock to KCl induced salinity in vitro. Biologia Plantarum, 50 (3): 477-480.
21– Sotriopoulos T.E. 2007. Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugar in the apple rootstock M4 cultured in vitro. Biologia Plantarum, 51 (1): 177-180.
22– Turkan I. Demiral T. 2009. Recent development in understanding salinity tolerance. Environ. Exp. Bot, 2-9: 67.
23– Vijayan K., Chakraborti S.P., Ghosh P.D. 2003. In vitro screening of mulberry (Morus spp) for salinity tolerance. Plant Cell Reports, 22: 350-357.
CAPTCHA Image