بررسی تأثیر روش های مختلف خشک‌کردن بر زمان خشک‌شدن و برخی خواص بیوشیمیایی نعنا فلفلی (.Mentha piperita L)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه جهرم

3 فردوسی مشهد

چکیده

برای انجام این تحقیق، آزمایشی بر پایه طرح کاملاً تصادفی با سه تکرار و 11 تیمار اجرا شد. شش توان مختلف ماکروویو شامل 100، 180، 300، 450، 600 و 900 وات، دو دمای آون شامل 50 و 70 درجه سانتی گراد، روش خشک‌کن، سایه مصنوعی و نمونه تازه به عنوان تیمارهای این آزمایش مورد مقایسه قرار گرفتند. در روش‌های مختلف خشک‌کردن، کاهش وزن نمونه ها تا رسیدن محتوای رطوبتی به 10/0 بر پایه وزن خشک رسید ادامه داشت. پس از خشک شدن نمونه ها صفاتی مانند مدت زمان خشک‌شدن، درصد اسانس، خصوصیات رنگ (L*، a*، b*، هیو و درجه خلوص رنگ) و برخی خصوصیات بیوشیمیایی (میزان فنل کل، فلاوونوئید کل، فلاون و فلاونول کل، کربوهیدرات کل و فعالیت آنتی‌اکسیدانی) مورد بررسی قرار گرفت. نتایج نشان دهنده تأثیر معنی دار روش های مختلف خشک‌کردن بر تمامی صفات مورد مطالعه بود. کم‌ترین و بیش‌ترین زمان خشک‌کردن (03/5 و 570 دقیقه) به ترتیب مربوط به تیمارهای خشک‌کردن با توان 900 وات ماکروویو و روش خشک‌کردن در خشک کن بود. بیش‌ترین درصد اسانس (6/2 درصد) در روش خشک‌کردن در خشک کن به دست آمد. بالاترین میزان شاخص b* و درجه خلوص رنگ در نمونه تازه و سپس در تیمارهای سایه مصنوعی و خشک‌کن بود و کم‌ترین میزان در تیمارهای ماکروویو 180 و 900 وات بود. هم‌چنین بالاترین میزان فنل کل در نمونه تازه و سپس در نمونه های خشک ‌شده در ماکروویو 900 وات و سایه مصنوعی بود در حالی‌که کم‌ترین میزان فنل کل در تیمار آون با دمای 70 درجه سانتی گراد به دست آمد. بیش‌ترین فعالیت آنتی اکسیدانی مربوط به نمونه تازه، نمونه‌های خشک شده در سایه مصنوعی و ماکروویو (600 و 900 و 450 وات) بود و کم‌ترین میزان فعالیت آنتی اکسیدانی در نمونه های خشک شده در آون با دمای 70 و 50 درجه سانتی گراد بود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Drying Methods on drying Time and some Biochemical Characteristics of Mentha × piperita L.

نویسندگان [English]

  • F. Roozdar 1
  • Majid azizi 1
  • A. Ghani 2
  • Gholam Hossein Davarynejad 3
1 Ferdowsi University of Mashhad
3 Ferdowsi university of Mashhad
چکیده [English]

In this research an experiment based on completely randomized design with three replications and 11 treatments was conducted of Mentha piperita. Treatments consisted of dryer drying, artificial shade drying, oven drying (50 and 70 °C), and microwave drying with different powers (100, 180, 300, 450, 600 and 900 w) and fresh sample as control. The end time of each treatment determined on the basis of moisture content equal to 0.10 on the basis of dried weight. After drying the samples, traits such as drying time, essential oil content, color parameters (L*, a*, b*, Hue and Chroma) and some biochemical parameters (total polyphenolic content, total flavonoids, flavone and flavonols, total carbohydrate and antioxidant activity) were studied. The results showed a significant effect of different drying methods on the studied traits. The minimum and maximum drying times (5.03 and 570 minutes) associated with microwave dried (900w) and drying method of dryer, respectively. The maximum essential oil content (2.6%) obtained from dryer dried samples. The highest amount of chroma and b* index related to fresh, artificial shade and dryer dried samples while the minimum content related to microwave dried samples (180 and 900 w). Also, the maximum amount of polyphenol compound obtained in fresh sample and microwave (900 w) and artificial shade dried samples, respectively. While the minimum content obtained to oven dried samples (70 °C). The most antioxidant activity (percentage of radical scavenging activity) obtained to fresh, artificial shade dried and microwave dried (600 and 900 and 450w) samples and the minimum amount were observed on oven dried samples (70 and 50 °C).

کلیدواژه‌ها [English]

  • Mentha × piperita
  • Polyphenol compound
  • Antioxidant activity
1- احمدی ک.، سفیدکن ف.، و عصاره م.ح. 1387. تأثیر روش های مختلف خشک کردن بر کمیت و کیفیت اسانس سه ژنوتیپ از گل محمدی .(Rosa damascena Mill.) تحقیقات گیاهان دارویی، 24(2): 162- 176.
2- امیدبیگی ر. 1376. تولید و فرآوری گیاهان دارویی، جلد سوم. طراحان نشر.
3- جوکار ا.، زمردیان ع.، مفتون آزاد ن.، و جوکار ل. 1391. تعیین شرایط بهینه خشک کردن دانه انار در خشک کن خورشیدی با استفاده از روش سطح پاسخ. مجله تحقیقات مهندسی کشاورزی، 13 (1): 57- 72.
4- شهدادی ف.، میرزایی ح.ا.، مقصودلو ی.، قربانی م. و دارایی گرمه خانی ا. 1390. تأثیر فرایند خشک کردن بر میزان ترکیبات فنولی و فعالیت آنتی اکسیدانی دو رقم خرمای کلوته و مضافتی .(Phoenix ductylifera) مجله علوم تغذیه و صنایع غذایی ایران، 6(3): 67- 74.
5- عبادی م. ت.، رحمتی م.، عزیزی م.، و حسن زاده خیاط م. 1389. بررسی تأثیر روش های مختلف خشک کردن (طبیعی، آون و میکروویو) بر زمان خشک کردن، درصد و اجزای اسانس گیاه دارویی مرزه (Satureja hortensis L.). فصلنامه علمی - پژوهشی تحقیقات گیاهان دارویی و معطر ایران، 26 (4) : 477-489.
6- عزیزی م.، رحمتی م.، عبادی ت.، و حسن زاده خیاط م. 1388. بررسی تأثیر روش های مختلف خشک کردن بر سرعت کاهش وزن، میزان اسانس و درصد کامازولن گیاه دارویی بابونه (Matricaria recutita L.). فصلنامه علمی - پژوهشی تحقیقات گیاهان دارویی و معطر ایران، 25 (2): 182-192.
7- غنی ع. و عزیزی م. 1388. بررسی اثر روش های مختلف خشک کردن بر خصوصیات ظاهری و میزان اسانس 5 گونه بومادران (.(Achillea مجله علمی کشاورزی، 32(1): 1-11.
8- محتشمی س.، بابالار م.، ابراهیم زاده موسوی م.، میرجلیلی م.ح.، و ادیب ج. 1391. اثر شرایط کشت و روش های مختلف خشک کردن، بر مدت زمان خشک شدن، میزان اسانس، خصوصیات رنگ و بار میکروبی گیاه دارویی بادرشبی.(Dracocephalum moldavica L.) مجله علوم باغبانی ایران، 43 (2): 243- 254.
9- Al- Farsi M., Alasalvar C., Morris A., Baron M., and Shahidi F. 2005. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. Food Chemistry, 53: 1752-9.
10- Arslan D., Ozcan M.M., and Okyay Menges H. 2010. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.). Energy Conver and Manage, 51: 2769- 2775.
11- Asekun O.T., Grierson D.S., and Afolayan A.J. 2007. Effects of drying methods on the quantity and quanity of the essential oil of Mentha longifolia L. subsp Capensis. Food Chemistry, 101: 995- 998.
12- Besbes S., Blecker C., Deroanne C., Bahloul N., Lognay G., and Drira N. E. 2004. Date seed oil: phenolic, tocopherol and sterol profiles. Journal Food Lipids, 11: 251- 5.
13- Bonvehi J.S., Coll F.V. 1994. Phenolic composition of propolis from China and from South America. Z Naturforsch 49: 712- 718.
14- Burits M., and Bucar F. 2000. Antioxidant activity of Nigella sativa essential oil. Phyto Research, 14: 323- 328.
15- Capecka E., Marecczek A., and Leja M. 2005. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chemistry, 93: 223- 226.
16- Carroll N.V., Longley R.W., Roe J.H. 1956. Glycogen determination in liver and muscle by the use of anthrone. Journal Biology chemistry, 220: 583- 593.
17- Demir V., Gunhan T., Yagcioglu A.K. and Degirmencioglu A. 2004. Mathematical modeling and the determination of some quality parameters of Project No: DAQ-194 A. Available online at http://www.rirdc.gov.au.
18- Gao X., Bjok L., Trajkovski V., and Uggla M. 2000. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. Journal Agriculture and Food Chemistry, 80: 2021- 7.
19- Gao X., Ohlander M., Jeppsson N., Bjork L., and Trajkovski V. 2000. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. Journal Agriculture and Food Chemistry, 48: 1485- 1490.
20- Hamrouni Sellami I., Zohra rahali F., Bettaieb Rebey I., Bourgou S., Limam F., and Marzouk B. 2012. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technology, 5: 2978–2989.
21- Rakic S., Petrovic S., Kukic J., Jadranin M., Tesevic V. and Povrenovic D. 2007. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chemistry, 104: 830- 4.
22- Harboune N., Marete E., Jacquier J.C., and O’Riordan D. 2009. Effect of drying methods on the phenolic constituents of meadow sweet (Filipendula ulmaria) and willow (Salix alba). Food Chemistry, 42(9): 1468- 73.
23- Maffei M., Bertea C.M., and Mucciarelli M. 2007. Anatomy, physiology, biosynthesis, molecular biology, tissue culture, and biotechnology of mint essential oil production: 41- 87. In: Lawrence, B.M., (Ed.). Mint: the genus mentha. Taylor and Francis Publishers, London, 576 p.
24- Martinov M., Oztekin S. and Muller J. 2007. Medicinal and aromatic crops. CRC Press, United States of America, 320 p.
25- Mbah B.O., Eme P.E., and Paul A.E. 2012. Effect of drying techniques on the proximate and other nutrient composition of Moringa oleifera leaves from two areas in eastern Nigeria. Pakistan Journal Nutrition, 11(11): 1044- 1048.
26- Muller J., Reisinger G., and Muhlbauer W. 1989. Drying of medicinal and aromatic plants in a greenhouse solar dryer. Landtechnik, 2: 58- 65.
27- Nicoli M.C., Anese M., and Parpinel M. 1999. Influence of processing on the antioxidant properties of fruits and vegetables. Trends in Food Science and Technology, 10: 94- 100.
28- Piga A., Del Caro A., Corda G. 2003. From plums to prunes: influence of drying parameters on polyphenols and antioxidant activity. Journal Agricultural and Food Chemistry, 51: 3675- 3681.
29- Soysal Y., Oztekin S., and Eren O. 2006. Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosystems Engineer, 93(4): 403- 413.
30- Soysal Y., and Oztekin S. 2001. Technical and economic performance of a tray dryer for medicinal and aromatic plants. Journal Agriculture Engineer Research, 79: 73- 79.
31- Soysal Y.M. 2004. Microwave drying characteristics of parsley. Biosystems Engineering, 89: 167- 73.
32- Tomas J.M.G., Boot K.J., Allen L.H., Allo-Meagher M., and Davis J.M. 2003. Elevated temperature and carbon dioxide effects on Soybean seed composition and transcript abundance. Crop Science, 43: 1548- 1557.
33- Vega-Galvez A., Scala K.D., KLemus-Mondaca R., Miranda M., Lopez J., and Perez-Won M. 2009. Effect of airdrying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chemistry, 117(4): 647- 53.
34- Wojdyło A., Oszmianski J., and Czemerys R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105: 940- 949.
35- Zhishen J., Mengcheng T., and Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559.
CAPTCHA Image