تجزیه ارتباط رگرسیونی صفات مرتبط با عملکرد با نشانگرهای مولکولی RAPD در پسته (P. vera L)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان

2 موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان

3 دانشگاه صنعتی اصفهان

چکیده

با بکارگیری نشانگرهای مولکولی، اصلاح گیاهان با سرعت و سهولت بیشتری انجام می‌گیرد و انتخاب والدین برای تلاقی های بعدی در برنامه‌های اصلاحی با اطمینان بیشتری انجام می‌گیرد. در دسترس بودن تعداد بسیار زیادی از نشانگرها و صفات مورفولوژیکی می‌تواند به مطالعه تجزیه رگرسیونی بین این نشانگرها و صفات مورفولوژیکی کمک نماید. در این تحقیق، ارتباط صفات مرتبط با عملکرد در 20 ژنوتیپ پسته با استفاده از 15 آغازگر RAPD مورد بررسی قرار گرفت. در نهایت 11 آغازگر چندشکلی نشان دادند و مجموعاً 56 قطعه (لوکوس) را تکثیر کردند که از این بین 36 قطعه (29/64 درصد) چند‌شکلی را با میانگین 09/5 الل به ازای هر پرایمر نشان دادند و میزان این چندشکلی از حداقل 25 درصد برای آغازگر AJ05 تا حداکثر 5/87 درصد برای آغازگر OPAD02 متغیر بود. میانگین محتوای اطلاعاتی حاصل از چند شکلی برای جایگاه‎ها 23/0 و از 095/0 (AJ05 و OPAD14) تا 39/0 (OPC05) متغیر بود. برای شناسایی نشانگرهای مثبت مرتبط با صفات اجزای عملکرد، تجزیه رگرسیون گام به گام بین داده‎های مولکولی به عنوان متغیرهای مستقل و صفات مورد مطالعه به عنوان متغیرهای وابسته انجام گرفت. نوزده قطعه RAPD با شش صفت مرتبط با عملکرد ارتباط داشتند. بعضی از نشانگرهای RAPD با بیشتر از یک صفت در تجزیه رگرسیون چندگانه ارتباط داشت که می‎تواند به خاطر اثر پلیوتروپیک مکان‎های صفات کمی بر روی صفات مختلف یا پیوستگی ژن‌های مختلف باشد. برای درک این موضوع تهیه نسل‌های در حال تفرق و نقشه‌های پیوستگی ضروری می‌باشد. همچنین این نتایج می‎تواند در برنامه‎های اصلاحی انتخاب به کمک نشانگر هنگامی که هیچ اطلاعات ژنتیکی در دسترس نیست، مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Regression Association Analysis of Yield-Related Traits with RAPD Molecular Markers in Pistachio (Pistacia vera L.)

نویسندگان [English]

  • Saeid Mirzaei 1
  • Mehdi Rahimi 1
  • Ali Tajabadipur 2
  • Masoud Bahar 3
  • Bahram SharifNabi 3
1 Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman
2 Agricultural Research, Education and Extension Organization
3 Isfahan University of Technology, Isfahan
چکیده [English]

Introduction: The pistachio (Pistacia vera), a member of the cashew family, is a small tree originating from Central Asia and the Middle East. The tree produces seeds that are widely consumed as food. Pistacia vera often is confused with other species in the genus Pistacia that are also known as pistachio. These other species can be distinguished by their geographic distributions and their seeds which are much smaller and have a soft shell. Continual advances in crop improvement through plant breeding are driven by the available genetic diversity. Therefore, the recognition and measurement of such diversity is crucial to breeding programs. In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). The germplasm-regression-combined association studies not only allow mapping of genes/QTLs with higher level of confidence, but also allow detection of genes/QTLs, which will otherwise escape detection in linkage-based QTL studies based on the planned populations. The development of the marker-based technology offers a fast, reliable, and easy way to perform multiple regression analysis and comprise an alternative approach to breeding in diverse species of plants. The availability of many makers and morphological traits can help to regression analysis between these markers and morphological traits.
Materials and Methods: In this study, 20 genotypes of Pistachio were studied and yield related traits were measured. Young well-expanded leaves were collected for DNA extraction and total genomic DNA was extracted. Genotyping was performed using 15 RAPD primers and PCR amplification products were visualized by gel electrophoresis. The reproducible RAPD fragments were scored on the basis of present (1) or absent (0) bands and a binary matrix constructed using each molecular marker. Association analysis between molecular date (as independent variable) and morphological data (as dependent variable) was performed using multiple regression analysis to identify informative markers associated with the yield related traits. Multiple regression analysis was conducted using stepwise method of linear regression analysis option of SPSS. Student t-test was performed to assess significance difference between mean trait estimates of genotypes where specific markers were present and absent. Markers shown significant regression values were considered to be associated with the trait under consideration.
Results and Discussion: Finally 11 primers were polymorphic and a total of 56 pieces (loci) were amplified that among these, 36 segments (64.29%) showed polymorphism with an average of 5.09% per primers and the rate of this polymorphism ranged from at least 25% for AJ05 primer up to 87.5% for OPAD02 primer. Polymorphic information content ranged from 0.095 (AJ05 and OPAD14) to 0.39 (OPC05), with an average of 0.23. Stepwise regression analysis between molecular data and traits was performed to identify informative markers associated with yield component traits. Nineteen RAPD fragments were found associated with six yield related traits. Some of RAPD markers were associated with more than one trait in multiple regression analysis that may be due to pleiotropic effect of the linked quantitative trait locus on different traits. However, to better understand these relationships, preparation of segregating population and linkage mapping is necessary. Also, these results could be useful in marker-assisted breeding programs when no other genetic information is available.
Conclusion: This investigation on molecular markers associated with yield traits in Pistachio has provided clues for identification of the genotypes with higher yield value. In breeding programs selection of quality material is often a time-consuming process, and thus marker-assisted selection could be of great useful in identification of promising genotypes with high value of yield traits. Some of RAPD markers can be used for elite selection of Pistachio, particularly when no other genetic information like linkage maps and quantitative trait loci are available for the species. The applications of the RAPD approach enable us to predict positive correlation between data generated by molecular markers and studied traits. Also, the marker–trait association identification will play an important role in plant MAS/QTL breeding programs, especially in plants where genetic information such as linkage map and QTL is not available.

کلیدواژه‌ها [English]

  • Dependent variable
  • Polymorphic primers
  • Stepwise regression
1- Afifi A., May S. and Clark V.A. 2003. Computer-aided multivariate analysis. CRC Press.
2- Barazani O., Atayev A., Yakubov B., Kostiukovsky V., Popov K. and Golan-Goldhirsh A. 2003. Genetic variability in Turkmen populations of Pistacia vera L. Genetic Resources and Crop evolution, 50: 383-389.
3- Barloy D., Lemoine J., Abelard P., Tanguy A., Rivoal R. and Jahier J. 2007. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Molecular Breeding, 20: 31-40.
4- Breseghello F. and Sorrells M.E. 2006. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46: 1323-1330.
5- Collard B.C. and Mackill D.J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 557-572.
6- Ganopoulos I.V., Kazantzis K., Chatzicharisis I., Karayiannis I. and Tsaftaris A.S. 2011. Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica, 181: 237-251.
7- Hormaza J., Plnney K. and Polito V. 1998. Genetic diversity of pistachio (Pistacia vera, Anacardiaceae) germplasm based on randomly amplified polymorphic DNA (RAPD) markers. Economic Botany, 52: 78-87.
8- Kafkas S. and Perl-Treves R. 2001. Molecular characterization of P. palaestina as a variety of P. terebinthus. p.^pp. 291-295. III International Symposium on Pistachios and Almonds 591,
9- Kar P.K., Srivastava P.P., Awasthi A.K. and Urs S.R. 2008. Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genetics & Genomes, 4: 75-83.
10- Khadivi-Khub A. 2014. Regression association analysis of fruit traits with molecular markers in cherries. Plant Systematics and Evolution, 300: 1163-1173.
11- Martinez L., Cavagnaro P., Masuelli R. and Rodriguez J. 2003. Evaluation of diversity among Argentine grapevine (Vitis vinifera L.) varieties using morphological data and AFLP markers. Electronic Journal of Biotechnology, 6: 244-253.
12- Mcharo M., Labonte D., Oard J., Kays S. and McLaurin W. 2004. Linking quantitative traits with AFLP markers in a sweetpotatoes using discriminant analysis. Acta Horticulturae, 637: 285-293.
13- Roy S. and Bargmann R.E. 1958. Tests of multiple independence and the associated confidence-bounds. The Annals of Mathematical Statistics,29: 491-503.
14- Shalini K., Manjunatha S., Lebrun P., Berger A., Baudouin L., Pirany N., Ranganath R. and Prasad D.T. 2007. Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome, 50: 35-42.
15- SPSS-Inc 2013. IBM SPSS Statistics 22 Core System User's Guide. SPSS Inc., an IBM Company Headquarters, USA.
16- Tajabadipur A. 1997. Identification of some pistachio cultivars. Faculty of Agriculture. Tehran University, Tehran, Iran. (in Persian with English abstract).
17- Tayefeh Aliakbarkhany S., Talaie A.R. and Fatahi Moghadam M.R. 2013. Investigation of genetic diversity among pistachio vera in the Khorasan by using molecular marker. Modern Genetics Journal, 8: 169-176. (in Persian with English abstract).
18- Virk P.S., Ford-Lloyd B.V., Jackson M.T., Pooni H.S., Clemeno T.P. and Newbury H.J. 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity, 76: 296-304.
19- Whitehouse W. 1957. The pistachio nut—a new crop for the western United States. Economic Botany, 11: 281-321.
20- Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531-6535.
21- Wright A. and Mowers R. 1994. Multiple regression for molecular-marker, quantitative trait data from large F2 populations. Theoretical and Applied Genetics, 89: 305-312.
22- Yonash N., Heller E., Hillel J. and Cahaner A. 2000. Detection of RFLP markers associated with antibody response in meat-type chickens: haplotype/genotype, single-band, and multiband analyses of RLFP in the major histocompatibility complex. Journal of Heredity, 91: 24-30.
23- Zhang J., Li X., Jiang G., Xu Y. and He Y. 2006. Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breeding, 125: 600-605.
24- Zohary M. 1952. A monographical study of the genus Pistacia. Palestine Journal of Botany (Jerusalem Series), 5: 187-228.
CAPTCHA Image