تأثیر دفعات محلول‌پاشی کود اوره بر پارامتر‌های فتوسنتزی درختان بارور پسته رقم کله‌قوچی در مراحل مختلف رشد میوه

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ولی عصر رفسنجان

چکیده

این تحقیق به‌منظور بررسی تأثیر دفعات کاربرد برگی کود اوره بر پارامترهای فتوسنتزی درختان پسته رقم کله‌قوچی انجام گرفت. در این آزمایش محلول‌پاشی کود اوره به غلظت 5/0 درصد در سه مرحله مختلف رشد میوه انجام شد و اندازه‌گیری پارامتر‌های فتوسنتزی، فلورسانس کلروفیل و همچنین رنگیزه‌های کلروفیل و مجموع کارتنوئید‌ها در دو نوبت، یک روز پس از آخرین محلول‌پاشی و 10 روز پس از مرحله اول اندازه‌گیری، انجام شد. نتایج نشان داد با افزایش دفعات محلول‌پاشی اوره، شدت فتوسنتز، تعرق و هدایت روزنه­ای نسبت به شاهد در هر دو زمان نمونه­گیری افزایش یافت، درحالی‌که غلظت دی‌اکسید کربن زیر روزنه‌ای کاهش پیدا کرد. کاربرد سه بار محلول‌پاشی اوره سبب افزایش 20 درصدی شدت فتوسنتز نسبت به درختان شاهد گردید. با افزایش دفعات محلول‌پاشی اوره مقدار نیتروژن برگ در هر دو زمان اندازه‌گیری افزایش پیدا کرد، به طوری‌که کاربرد سه بار محلول‌پاشی اوره سبب افزایش 65 درصدی غلظت نیتروژن برگ نسبت به درختان شاهد گردید، ولی کارایی استفاده از نیتروژن فتوسنتزی کاهش یافت. شاخص­های Fv/Fm و PI نیز با افزایش دفعات محلول‌پاشی اوره در هر دو زمان اندازه­گیری افزایش یافت. رنگیزه­های کلروفیل نیز تحت تأثیر محلول­پاشی اوره قرار گرفت، به‌طوری که محلول­پاشی اوره در سه مرحله به ترتیب سبب افزایش 11، 14 و 30 درصدی کلروفیل a، b و کل نسبت به تیمار شاهد گردید. به‌طور کلی نتایج نشان داد بیش‌ترین میزان فتوسنتز و پارامتر‌های مرتبط به آن در زمان دوم نمونه‌برداری و در تیمار سه بار محلول‌پاشی اوره دیده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Repeated Foliar Applications of Urea on Photosynthetic Parameters of Pistachio Tress cv. ”Kalleh-ghuchi” in Different Stages of Fruit Growth

نویسندگان [English]

  • N. Gharaei Masjedi
  • M.H. Shamshiri
  • M.R. Dehghani
Vali-e-Asr University of Rafsanjan
چکیده [English]

Introduction: Pistachio (Pistacia vera), as one of the most important horticultural products of Iran, has been embraced as one of the main commercial products. Rafsanjan is an important area of pistachio production in the world. High production is primarily dependent on the ability of the trees to produce large amounts of photoassimilates during the growing season. Nitrogen is the primary nutrient element needed in the greatest quantities for plant growth and physiology. The greatest impact of nitrogen is in relation to photosynthesis. Therefore, the rate of CO2 assimilation has been closely related to leaf nitrogen status. Nitrogen deficiency leads to the reduction in the activities of enzymes involved in photosynthesis and consequently a decrease in the rate of CO2 assimilation. Regarding the key role of nitrogen in metabolic activities, especially photosynthesis, this research was conducted to investigate the effects of repeated foliar applications of urea on photosynthesis parameters of “Kalleh-ghuchi” pistachio cultivar.
Materials and Methods: This research was conducted to assess the effect of repeated foliar applications of urea on photosynthetic parameters of pistachio trees in different stages of fruit growth, as a factorial experiment based on a randomized complete block design with five replications. In this experiment, urea was applied at the rate of 0.5% at three different stages of fruit growth including initiation of embryo growth, rapid growth of embryo and during flower bud abscission with two weeks interval. Measurement of photosynthesis parameters (including photosynthesis (A), transpiration rate (E) and stomatal conductance (gs) and intercellular CO2 concentration (Ci)) were done by used a portable photosynthesis system, after measuring photosynthesis parameters, chlorophyll fluorescence parameters (Fv/Fm and PII) were recorded by using a Chlorophyll Fluorometer. Leaf nitrogen content was determined by the kjeldahl method. Leaf chlorophyll and carotenoids content were measured according to porra (2002). Photosynthetic nitrogen use efficiency (PNUE) was calculated as the ratio of photosynthesis to foliar nitrogen content. All above parameters was performed in two times, one day after the last spraying and 10 days after the first stage of measurement. The experimental data was analyzed by SAS software and the significant differences among the treatment were tested by Duncan test.
Results: The results showed that photosynthesis and transpiration rate and stomatal conductance were increased in urea treated trees compared to control in both sampling dates, while intercellular CO2 concentration was decreased by urea application. Three times applications of urea caused a 20% increase in photosynthesis rate compared to control trees. Leaf nitrogen content was also increased by repeated urea application in two sampling dates, as three times application of urea resulted in a 65% increase in leaf nitrogen concentration compared to the control , while photosynthetic nitrogen use efficiency decreased by urea application. Fv/Fm and PII were improved by repeated urea applications in two sampling dates. The results also indicated that chlorophyll pigments were increased by urea application. Generally, results showed that the maximum of photosynthesis and related parameters were obtained with three applications of urea at second date of sampling.
Discussion: Any increase in photosynthesis with urea application indicates that more nitrogen maybe allocated to the enzymes of the carbon assimilation. Thus, more CO2 could be used by the plant, therefore increases in CO2 assimilation was accompanied by a decrease in the Ci due to nitrogen application. In the present study, nitrogen application increased stomatal conductance of pistachio trees. Application of nitrogen can influence stomatal opening, and thus transpiration rate. Increased chlorophyll content with applied nitrogen indicates paramount role of nitrogen in determining of chlorophyll synthesis. Increasing photosynthesis rate is always accompany with chlorophyll fluorescence reduction that is in agree with our results. Differences in PNUE are mainly brought about by differences in photosynthetic capacity or foliar nitrogen allocation either within the photosynthetic apparatus or to non-photosynthetic pools (e.g. cell walls, nitrate).
Conclusion: The results of this study showed that urea application can improve photosynthesis capacity by increasing nitrogen content of pistachio leaves. In this experiment, repeated foliar applications of urea in different stages of fruit growth had positive effects on photosynthesis and other dependent parameters which may be effective in reduction of alternate bearing in pistachio trees. On the other hand, the effect of nitrogen application on photosynthesis was continued for more than a month after application, compared to control.

کلیدواژه‌ها [English]

  • Pistachio
  • Photosynthetic pigments
  • Photosynthesis rate
  • Nitrogen
Afrousheh M., Hokmabadi H. and Hosseini H. 2010. Effect of nitrogen, iron, magnesium, manganese and molybdenum deficiencies on biochemical and ecophysiological characteristics of pistachio seedling (Pistacia vera), Journal of Soil Science, 94:53-63.
2- Agnieszka S. and Brodzik R. 2000. Plant ureases: Roles and regulation, Acta Biochimica Polonica, 4:1189-1195.
3- Ahmad R., Waraich E.A., Ashraf M.Y., Ahmad S. and Aziz T. 2014. Does nitrogen fertilization enhance drought tolerance in sunflower? A review, Journal of Plant Nutrition, 37(6):942-963.
4- Baninasab B., Rahimi M. and Javanshah A. 2007. Effect of time foliar application of nitrogen and ites concentrations on the flower bud retention in pistachio tree, International Journal of Soil Science, 2(1):40-47.
5- Bondada B. and Syvertsen J. 2003. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status, Journal of Tree Physiology,23:553-559.
6- Bondada B. and Syvertsen J. 2005. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves, Journal of Environmental and Experimental Botany,54:41-48.
7- Boussadia O., Steppe K., Van Labeke M.C., Lemeur R. and Braham M. 2015. Effects of nitrogen deficiency on leaf chlorophyll fluorescence parameters in two olive tree cultivars ‘Meski’ and ‘Koroneiki’, Journal of Plant Nutrition, 38(14):2230-2246.
8- Boussadia O., Steppe K., Zgallai H., Ben El Hadj S., Braham M., Lemeur R. and Van Labeke M. 2010. Effects of nitrogen deciency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars 'meski' and 'koroneiki, Journal of Scientia Horticulturae, 123:336-342.
9- Bremner, J. M. 1965. Total Nitrogen 1. In: A.G. Norman, editor, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Agronomy Monograph. 9.2. ASA, SSSA, Madison, WI. p. 1149-1178.
10- ChenL. and Chen L. 2003. Carbon assimilation and carbohydrate metabolism of concord grap (Vitis Labrusca L.) leaves in response to nitrogen supply, Journal of Horticulture Science, 128(5):754-760.
11- Cheng L and Fuchigami L. 2000. CO2 assimilation in relation to nitrogen in apple leaves, Journal of Horticultural Science and Biotechnology, 75(4):383-387.
12- Cheng L., Ma F. and Ranwala D. 2004. Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply, Tree physiology, 24(1):91-98.
13- Connell J.H., Krueger W.H., Ferguson L., Metheney P.D., Reyes H. and Sibbett G.S. 2002. Effects of foliar application of urea on olive leaf nitrogen, growth and yield, Acta Horticulture, 586: 251-254.
14- Costa G., Lain O., Vizzotto G. and Johnson S. 1997. Effect of nitrogen fertilization on fruiting and vegetative performance, fruit quality and post-harvest life of Kiwifruit cv. Hayward, Acta Horticulture, 444: 279-284 .
15- DeJong T.M. 1983. CO2 [carbon dioxide] assimilation characteristics of five Prunus tree fruit species [Almond, apricot, cherry, peach, plum, photosynthesis], Journal of the American Society for Horticultural Science, 108:303-307.
16- El-Otmani M., Ait-Oubahou A., Zahra F. and Lovatt C. J. 2002. USA.Efficacy of foliar urea as an N source in substainable citrus production systems, Acta Horticulture, 586: 251-254. .
17- Esmaeilizadeh M., Talaie A.R., Lesani H., Javanshah A. and Hokmabadi H. 2014. Effect of shoot girdling, fruit thinning and foliar application of urea, zinc sulfate and sucrose on yield, leaf chlorophyll content, photosynthesis rate and nut quantitative characteristics of Pistachio cv. ‘Ohadi’, Journal of Horticultural Science, 28(3):277-287. (in Persian)
18- Feng L., Li H., Jiao J., Li D., Zhou L., Wan J. and Li Y. 2009. Reduction in SBPase activity by antisense RNA in transgenic rice plants: effect on photosynthesis, growth, and biomass allocation at different nitrogen levels, Journal of Plant Biology, 52(5):382-394.
19- Ferguson L. 1986. Effect of foliar urea applications on leaf nitrogen content and bud retention in pistachios, California Pistachio Industry, Annual Report, 94-95.
20- FAO . 2014. Food outlook global market analysis. Food and agriculture organization, rome, Italy.
21- Hakam P., khanizade S., Deell J. R. and Richr C. 2000. Assessing chilling tolerance in roses using chlorophyll fluorescence, Horticultural Science, 35:184-186.
22- Hokmabadi H., Arzani K., Dehghani-Shooraki Y. and Panahi B. 2004. Response of badami-zarand, sarakhs and ghazvini Pistachio rootstocks to sodium chloride and boron excess in irrigation water, Journal of Water and Soil Science, 7(4):11-24. (in Persian)
23- Jiang C., Zu C. and Wang H. 2015. Effect of Nitrogen Fertilization on Growth and Photosynthetic Nitrogen use Efficiency in Tobacco (Nicotiana tabacum L.), Journal of Life Sciences, 9:373-380.
24- Klein I. and Weinbaum A. 1987. Foliar application of urea to olive: Translocation of urea nitrogen as influenced by sink demand and nitrogen deficiency, Journal of American Society for Horticultural Science, 109:356-360.
25- Lawlor D. W. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems, Journal of Experimental Botany, 370(15):773-787.
26- Lin Z.H., Zhong Q.S., Chen C.S., Ruan Q.C., Chen Z.H. and You X.M. 2016. Carbon dioxide assimilation and photosynthetic electron transport of tea leaves under nitrogen deficiency, Botanical Studies, 57(1):37-48.
27- Liu X., Fan Y., Long J., Wei R., Kjelgren R., Gong C. and Zhao J. 2013. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings, Journal of Environmental Sciences, 25(3):585-595.
28- Long S.P., ZHU X.G., Naidu S.L. and Ort D.R. 2006. Can improvement in photosynthesis increase crop yields?. Plant, Cell and Environment, 29(3):315-330.
29- Moghaddam M., Estaji A. and Farhadi N. 2015. Effect of Organic and Inorganic Fertilizers on Morphological and Physiological Characteristics, Essential Oil Content and Constituents of Agastache (Agastache foeniculum), Journal of Essential Oil Bearing Plants, 18(6):1372-1381.
30- Moon J., Bailey D., Fallahi E., Jensen R. and Zhu G. 2002. Effect of nitrogen application on growth and photosynthetic nitrogen use efficiency in Two ecotypes of wild strawberry, (Fragaria chiloensis L. ) Duch, Journal of Deciduous Fruit and Nut, 45:132-146.
31- Netto A.T., Campostrini E., de Oliveira J.G. and Bressan-Smith R.E. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves, Scientia Horticulturae, 104(2):199-209.
3- Nicodemus M., Salifu F. and Jacobs D. 2008. Growth, nutrition, and photosynthetic response of black walnut to varying nitrogen sources and rates, Journal of Plant Nutrition, 31(11):1917-1936.
33- Ouzounis T. and Lang G.A. 2011. Foliar applications of urea affect nitrogen reserves and cold acclimation of sweet cherries (Prunus avium L.) on dwarfing rootstocks, Horticultural Science, 46 (7):1015-1021.
34- Pankovic D., Plesnicar M., Arsenijevic-Maksimovic I., Petrovic N., Sakac Z. and Kastori R. 2000. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants, Annals of Botany, 86(4):841-847.
35- Porra R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b, Photosynthesis Research, 73:149-156.
36- Proietti P. and Famiani F. 2002. Diurnal and seasonal changes in photosynthetic characteristics in different olive (Olea europaea L.) cultivars, Photosynthetica, 40 (2):171-176.
37- Rachmilevitch S., Cousins A.B. and Bloom A.J. 2004. Nitrate assimilation in plant shoots depends on photorespiration, Journal of Plant Biology, 101(31):11506-11510.
38- Shangguan Z., Shao M. and Dyckmans J. 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology, 156(1):46-51.
39- Stiegler J.C., Richardson M.D. and Karcher D.E. 2011. Foliar nitrogen uptake following urea application to putting green turfgrass species, Crop Science, 51(3):1253-1260.
40- Tromp J. and Ovaa J.C. 1976. Effect of time of nitrogen application on amino‐nitrogen composition of roots and xylem sap of apple, Physiologia Plantarum, 37(1):29-34.
41- Vrabl D., Vaskova M., Hronkova M., Flexas J. and Santrucek J. 2009. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid, Journal of Experimental Botany, 60(8):2315-2323.
42- Xin Z.L., Mei G., Li S.Q., Li S.X. and Liang Z.S. 2011. Growth, water status and photosynthesis in two maize (Zea mays L.) cultivars as affected by supplied nitrogen form and drought stress, Pakistan Journal of Botany, 43:1995-2001.
43- Zhang L., Li S., Liang Z. and Li S. 2009. Effect of foliar nitrogen application on nitrogen metabolism, water status, and plant growth in two maize cultivars under short-term moderate stress, Journal of Plant Nutrition, 32(11):1861-1881.
44- Zhu X.G., Long S.P. and Ort D.R. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?,. Current Opinion in Biotechnology, 19(2):153-159.
CAPTCHA Image