##plugins.themes.bootstrap3.article.main##

عابدین مشعشعی محمدمهدی جوکار

چکیده

قرنفل (Dianthus barbatus L.) یکی از مهمترین گیا‌هان فضای‌ سبز در مناطق معتدل است که به‌عنوان گیاه باغچه‌ای، گلدانی و همچنین گل‌بریدنی کشت می‌گردد. شوری خاک و آب در بخش‌های وسیعی از کشور مهمترین مشکل پیش‌رو در گسترش فضای ‌سبز شهری آن می‌باشد. باتوجه به اهمیت قرنفل در فضای ‌سبز شهری و درک بهتر مبانی فیزیولوژیکی پاسخ گیاه به تنش در محیط درون شیشه‌ای، در این پژوهش تأثیر تنش شوری بر گیاه قرنفل در شرایط درون شیشه‌ای مورد بررسی قرار گرفت. بدین منظور پینه‌های حاصل از ریزنمونه‌های برگ که در محیط‌کشت MS حاوی 2 میکرومولار BAP + 6 میکرومولار NAA پرآوری گردیده بودند، تحت تأثیر سطوح مختلف کلریدسدیم (0، 1، 3، 6، 9 و 12 گرم‌درلیتر) در محیط کشت MS قرار گرفتند. سپس شاخص‌های مختلف فیزیولوژیکی (همچون رشد، نرخ رشد نهایی، وزن‌تر و خشک) و بیوشیمیایی (همچون میزان تغییرات پروتئین‌کل، اسمولیت گلاسین-بتائین، فعالیت آنزیم بتائین آلدهایددهیدروژناز و همچنین میزان فعالیت آنزیم‌های کاتالاز، پراکسیداز، سوپراکسیددسموتاز و میزان بیومارکرتخریبی مالون‌دی‌آلدهاید) در پینه‌های تنش‌یافته مورد بررسی قرار گرفت. نتایج نشان داد با افزایش سطح تنش، رشد پینه‌ها کاهش و درنتیجه از وزن‌تر و خشک آن‌ها نیز کاسته شد. از سوی دیگر میزان پروتئین کل، فعالیت آنزیم بتائین آلدهایددهیدروژناز و درنتیجه اسمولیت گلاسین-بتائین با افزایش سطح تنش، افزایش یافت. فعالیت آنزیم‌های شکارکننده رادیکال آزاد همچون کاتالاز، پراکسیداز و سوپراکسیددسموتاز نیز با افزایش میزان تنش به‌طور‌معنی‌داری افزایش یافت. در بین سه آنزیم شکارکننده رادیکال‌آزاد، پراکسیداز کمترین میزان فعالیت و کاتالاز بیشترین میزان فعالیت را درنتیجه تنش داشتند. پراکسیداز همچنین کمترین میزان افزایش فعالیت در نتیجه تنش را به خود اختصاص داد. این درحالی بود که افزایش میزان فعالیت در دو آنزیم کاتالاز و سوپراکسیددسموتاز تقریباً به یک اندازه مشاهده گردید. بیومارکر تخریبی مالون‌دی‌آلدهاید نیز علیرغم افزایش فعالیت آنزیم‌های شکارکننده رادیکال‌آزاد با افزایش تنش شوری، افزایش یافت. به طور کلی نتایج این تحقیق نشان داد که گیاه قرنفل در محیط درون شیشه‌ای به تنش شوری حساس بوده و آستانه تحمل آن به شوری محیط غلظت 1 گرم در لیتر کلریدسدیم می‌باشد. این درحالی است که، پینه‌های این گیاه تا شوری 12 گرم در لیتر کلریدسدیم مقاوم بوده و ضمن رشد بطئی به حیات خود ادامه دادند.


 

جزئیات مقاله

کلمات کلیدی

بتائین آلدهایددهیدروژناز, سوپراکسیددسموتاز, کاتالاز، گلاسین-بتائین, مالون‌دی‌آلدهاید

مراجع
- Aeby H. 1984. Catalase in vitro. Methods Enzymology 105: 121–126.
2- Ahmadpour Dehkordi S., and Balouchi H.R. 2012. Effect of seed priming on antioxidant enzymes and lipids peroxidation of cell membrane in Black cumin (Nigella sativa) seedling under salinity and drought stress. Electronic Journal of Crop Production 5(4): 63-85. (In Persian with English Abstract)
3- Ali A., Afrasiab H., Naz S., Rauf M., and Iqhbal J. 2008. An efficient protocol for in vitro propagation of carnation (Dianthus caryophyllus L.). Pakistan Journal of Botany 40: 111-121.
4- Al-Khayre K.M., and Al-Bahranny A.M. 2002. Growth, water Contene, and proline accumulation in drought stressed callus of date palm. Biological Plantrum 48(1): 105-108.
5- Arakawa K., Katayama M., and Takabe T. 1990. Levels of Betaine and Betaine Aldehyde Dehydrogenase Activity in the Green Leaves, and Etiolated Leaves and Roots of Barley. Plant Cell Physiology, 31(6):797-803.
6- Arakawa K., Takabe T., Sugiyama T., and Akazawa T. 1987. Purification of betaine-aldehyde dehydrogenase from spinach leaves and preparation of its antibody. Journal of Biochemistry 101: 1485-1488.
7- Ashraf M., and Foolad M.R. 2007. Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59: 206-216.
8- Ashraf, M., and Harris, P.J.C. 2004. Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Science 166: 3-16.
9- Ayse S., and Alikamanoglu S. 2013. Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cell Developmental Biology Plant 49: 396-404.
10- Azizi M., Chehrazi M., and Zahedi S.M. 2011. Effects of Salinity Stress on Germination and Early Growth of Sweet William (Dianthus barbatus). Asian Journal of Agricultural Sciences 3(6): 453-458.
11- Boominathan R., and Doran P.M. 2002. Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist 156: 202-205.
12- Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anals of Biochemistry 72: 248-254.
13- Cai X., Niu G., Starman T. and Hall C. 2014. Response of six garden roses (Rosa× hybrida L.) to salt stress. Scientia Horticulturae 168: 27-32.
14- Chandra S., and Rawat D.S. 2015. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integrative Medicine Research 4: 123-131.
15- Compton M.E. 1994. Statistical method suitable for the analysis of plant tissue culture data. Plant Cell Tissue 37: 217- 242.
16- Dash M., and Panda S.K. 2001. Salt stress induced changes in growth and enzyme activities in germination Phaseolus mungo seeds. Biologia Plantarum 44(4): 587-589.
17- de Azevedo-Neto A.D., Prisco J.T., Enéas-Filho J., de Abreu C.E.B., and Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56(1): 87-94.
18- Doel J.M., and Wilkins H.F. 1999. Floriculture: principles and species. Prentic-Hall, Inc. New Jersy, USA. 613p.
19- Ebrahimi M., Zamani G.R., and Alizadeh Z. 2017. A study on the effects of water deficit on physiological and yield-related traits of pot marigold (Calendula officinalis L.). Iranian Journal of Medicinal and Aromatic Plants 33(3): 492-508. (In Persian with English Abstract)
20- FAO. 2010. Extent and causes of salt-affected soils in participating countries. Available on URL: http://www.fao.org/ag/AGL/agll/spuch/topic4.htm.
21- Galbally J., and Galbally E. 1997. Carnations and Pinks for garden and greenhouse. Timber Press, Portland Oregon, USA. 310p.
22- Ghasemi Ghasareh M. and Kafi M. 2015. Floriculture: Princiles and Practicals. Elm Afarin Publication, Esfahan, Iran. 313p.
23- Ghorbanli M., Ahmadi F., Monfared A., and Bakhshi Khaniki G.H. 2012. Effect of salt stress and its interaction with ascorbate on catalase, ascorbate peroxidase activity, proline and malondialdehyde in Cuminum cyminum L. four weeks after germination. Iranian Journal of Medicinal and Aromatic Plants 28(1): 14-27. (In Persian with English Abstract)
24- Gill S.S., and Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12): 909‐930.
25- Giri J. 2011. Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling and Behavior 6(11):1746-1751.
26- Grieve C.M., and Grattan S.R. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70: 303-307.
27- Gunes A., Inal A., Alpaslan M., Eraslan F., Bagci E.G., and Cicek N. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164: 728-736.
28- Haouala F., and Jaziri F. 2009. In Vitro Propagation of Carnation (Dianthus Caryophyllus L.) Under Salt Stress. Pakistan Journa of Biotechnology 6(1-2): 27-30.
29- Haouala F., Hannachi C., and Zid E. 2003. Exploitation de la variabilité soma-clonale pour la recherche d’oeillet (Dianthus caryophyllus L.) tolérant à la salinité. Tropicultura 21(1): 16-21.
30- Harati E., Kashefi B., and Matinizadeh M. 2017. Investigation of Reducing Detrimantal Effects of Salt Stress on Morphological and Physiological Traits of (Thymus daenensis Celak.) through Salicylic Acid Application. Plant Production Technology 8(2): 111-125. (In Persian with English Abstract)
31- Hashemi Esfahani S.A. 2008. Modern Floriculture Extension. Sepehr Publication, Tehran, Iran. 192 p. (In Persian)
32- ICARDA. 2002. International cooperation Highlands regional program. Available on: URL: http// www.icarda.cgiar.org.
33- Irma T., Jolan C., Gabriella S., Ferenc H., Attila P., Gabriella K., Agnes S., Margit S., and Laszlo E. 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pre- treatment. Acta Biologica Szegediensis 46(3-4): 55-56.
34- Kar M. and Mishra D. 1976. Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology, 578:315-319.
35- Li-Ping B., Fang-Gong S., Ti-Da G., Zhao-Hui S., Yin-Yan L., and Guang-Sheng Z. 2006. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 16: 326-332.
36- Lutts S., Almansoure M., Kinet J.M. 2004. Salinity and water stree have contrasting effects on the relation ship between growth and cell viability during and after stress stress exposure in durum wheat callus. Plant Science 167: 9-18.
37- Ma X., Zheng J., Zhang X., Hu Q., and Qian R. 2017. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Frontiers in Plant Science 8: 600
38-Makela P., Peltonen-Sainio P., Jokinen K., Pehu E., Setala H., Hinkkanen R., and Somersalo S. 1996. Uptake and translocation of foliar applied glycinebetaine in crop plants. Plant Science 121: 221-230.
39- McCord J.M., and Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244(22):6049-6055.
40- Minami M., and Yoshikawa H. 1979. A simplified assay method of superoxide dismutase activity for clinical use. Clinical Chemistry Acta 92: 337-342.
41- Miri H.R., and Moghadam A.Z. 2015. The Effect of External Usage of Glycine Betaine on Corn (Zea mays L.) in Drought Condition. Iranian Journal of Field Crops Research 12(4): 704-717. (In Persian with English Abstract)
42- Moshashaei A., Jowkar M.M., and Farshadfar E. 2019. Callogenesis optimization and the effect of in vitro osmotic stress on Dianthus barbatus (L.) calli. Journal of Plant Process and Function 7(27): 237-252. (In Persian with English Abstract)
43- Munir N., and Aftab F. 2009. The role of polyethylene glycol (PEG) pretreatment in improving sugarcane’s salt (NaCl) tolerance. Turkish Journal of Botany 33(6): 407-415.
44- Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239-250.
45- Nisreen Y., El-Kichaoui A., and Ayesh B. 2015. Enhancement of Salinity Tolerance in (Dianthus caryophyllus L.) using in vitro Selection Technique and Isolation of Potential Salinity Tolerance. Islamic University- Gaza Deanship of Postgraduate Studies, Faculty of Science, Department of Biological Sciences. pp: 67-87.
46- Orcutt D.M., and Nilsen E.T. 2000. The physiology of plants under stress, soil and biotic factors. John Wiley and Sons. New York, USA. pp: 177-235.
47- Oz Aydin S., Dirmenci T., Tumen G., and Can Baser K.H. 2006. Plants used as analgesic in the folk medicine of Turkey. Proceedings of the 4th International Congress of Ethnobotany (ICEB 2005). pp: 167-171.
48- Parida A.K., and Das A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349.
49- Patade V.Y., Lokhande V.H., and Suprasanna P. 2014. Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. Sugar Technology, 16 (1): 22-29.
50- Razavizadeh R., and Ehsanpour A. 2004. Studying the tolerance of Medicago sativa L. calli to drought stress under UV-C irridation. Iranian Biology Journal 17(2): 1-12. (In Persian with English Abstract)
51- Rostami M., and Mazaheri S. 2010. Effect of salinity stress on Dianthus barbatus seed germination. Medicinal Plant National Conference. Sari, Iran. (In Persian)
52- Sakthivelu G., Akitha M.K., Giridhar P., Rajasekaran T., Ravishankar G.A., Nedev T., and Kosturkova A. 2008. Drought- induced alteration in growth, osmotic potential and in vitro regeneration of Soybean cultivars. Plant Physiology 34(1-2): 103-112.
53- Salmalian M., Ghasemnejad A., and Mashayekhi K. 2017. The study of quantitative and qualitative changes of Stevia rebaudiana Bertoni. Callus under the influence of salicylic acid and salt in solid and liquid culture conditions. Quarterly Journal of Ecophytochemisrty of Medicinal Plants 19(3): 23-39. (In Persian with English Abstract)
54- Sotiropoulos T.E. 2007. Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro. Biologia Plantarum 51: 177-180.
55- Soundararajan P., Abinaya M., Yoo G., Park M., Sowbiya M., and Byoung R.J. 2015. Silicon Alleviates Salt stress by Modulating Antioxidant Enzyme Activities in Dianthus caryophyllus ‘Tula’. Environmental Biotechnology 56(2): 233-239.
56- Sudhakar C., Lakshmi A., and Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science 141: 613-619.
57- Sunita D., and Gupta A.K. 2002. Tissue culture studies in carnation (Dianthus caryophyllus L.). MS Thesis. College of Agriculture. CCS Haryana Agricultural University, Hisar, India. pp: 68-96.
58- Takahashi R., Liu S., and Takano T. 2009. Isolation and Characterization of Plasma membrane Na+/H+ antiporter Genes from Salt-Sensitive and Salt- Tolerant (Sweet William). Journal of Plant Physiology 166: 301- 309.
59- Tehranifar A., and Kharrazi M. 2016. In Vitro Culture of Carnation (Dianthus caryophyllus L.) Focusing on the Problem of Vitrification. Journal of Biodiversity and Environmental Sciences 5(13): 1-6.
60- Thakur M., and Sharma A.D. 2005. Salt-stress-induced proline accumulation in germinating embryos: evidence suggesting a role of proline in seed germination. Journal of Arid Environments 62: 517–523.
61- Varier A., Vari A.K., and Dadlani M. 2010. The subcellular basis of seed priming. Current Science 99(4): 450-456.
62- Yildirim O., Aras S., and Ergul A. 2004. Response of Antioxidant System to Short-term NaCl stress in Grapevine Root stock-1616c and Vitis vinifera L. cv. Razaki. Acta Biological Cracoviensia 46: 151-158.
63- Zhang F.Q., Zhang H.X., Wang G.P., Xu L.L., and Shen Z.G. 2009. Cadmium induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureusand Vicia sativaand the roles of different antioxidant enzymes. Journal of Hazardous Materials 168(1): 76-84.
ارجاع به مقاله
مشعشعیع., & جوکارم. (2019). تأثیر تنش شوری درون شیشه‌ای بر شاخص‌های رشدی، محافظت اسمزی و تنش اکسیداتیو در پینه گیاه قرنفل . علوم باغبانی, 33(3), 549-565. https://doi.org/10.22067/jhorts4.v33i4.80302
نوع مقاله
علمی - پژوهشی