##plugins.themes.bootstrap3.article.main##

سید فرهاد صابرعلی حسین نستری نصرآبادی زهرا شیرمحمدی علی اکبر خانی

چکیده

جوانه­زدن کامل و یکنواخت که شرط لازم برای استقرار گياهچه­هاي قوي و نهایتاً تولید موفق یک محصول است، تحت تاثیر عوامل مختلف محيطي بویژه حرارت و رطوبت بستر کشت قرار می­گیرد. به منظور مطالعه تأثیر دما و تنش خشکی بر جوانه­زنی بذر هندوانه و کمی سازی پاسخ جوانه­زنی با مدل­های زمان حرارتی-رطوبتی، آزمایشی به صورت فاکتوریل با هفت سطح دما شامل 10، 15، 20، 25، 30، 35 و 40 درجۀ سلسیوس و شش سطح تنش خشکی شامل 0، 25/0-، 5/0-، 75/0-، 0/1- و 25/1- مگاپاسکال انجام شد. نتایج نشان داد بطور متوسط در همۀ سطوح دمایی با کاهش پتانسیل اسمزی، میزان جوانه­زنی کاهش یافت، با این­وجود شدت این کاهش در محدوده حرارتی 25 درجه سانتی­گراد کمتر از دماهای بالاتر و پایین تر آن بود. کمینه و بیشینه دما برای جوانه­زنی هندوانه در روش رگرسیون خطی به ترتیب 7/10 و 0/40 درجه ساتیگراد، و در روش مدل زمان حرارتی 5/11 و  1/40 درجه سانتیگراد برآورد گردید. درجه حرارت مطلوب جوانه­زنی نیز در روش رگرسیون و مدل زمان حرارتی-رطوبتی به ترتیب 3/25 و 2/25 درجه سانتی­گراد برآورد شد. مقدار پتانسیل آب پایه برای جوانه­زنی هندوانه در مدل زمان رطوبتی در درجه حرارت­های مختلف نیز بین 45/0-  تا 23/1- مگاپاسکال محاسبه شد، با این­وجود در مدل زمان حرارتی-رطوبتی مقدار پتانسیل آب آستانه برای جوانه­زنی در دامنه حرارتی پایین تر و بالاتر از حد مطلوب حرارتی بین 1/1- تا 2/1- مگاپاسکال تخمین زده شد. بدین ترتیب نتایج نشان داد که با افزایش حرارت بستر کشت پتانسیل آب پایه برای جوانه­زنی افزایش خواهد یافت. در نهایت نتایج مدل نشان داد که مدل زمان حرارتی-رطوبتی به­خوبی قادر است بیش از 90 درصد تغییرات جوانه­زنی بذر هندوانه را در پاسخ به حرارت و رطوبت کمی کند.

جزئیات مقاله

کلمات کلیدی

تجزیه پروبیت, تنش خشکی, پتانسیل آب پایه, مدل زمان حرارتی-رطوبتی

مراجع
1- Akram-Ghaderi F., Soltani A. and Sadeghipour H.R. 2008. Effect of temperature and water potential on germination of medicinal pumpkin (Cucurbita pepo. convar. pepo var. styriaca), black cumin (Nigella sativa L.) and borago (Borago officinalis L.). Journal of Agricultural Sciences and Natural Resources, 15(5): 157-170. (In Persian)
2- Allen P.S., Meyer S.E. and Khan M.A. 2000. Hydrothermal time as a tool in comparative germination studies.p.401–410. In: Black, M., Bradford, K. J., Vazquez-Ramos J. (ed.), Seed biology: Advances and applications, CAB International, Wallingford, UK.
3- Alvarado V., and Bradford K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment, 25: 1061–1069.
4- Argyris J., Dahal P., Hayashi E., Still D.W., and Bradford K.J. 2008. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology 148: 926–947.
5- Bakhshandeh E., Atashi S., Hafeznia M., Pirdashti H., and Teixeira da Silva J. A. 2015. Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination. Acta Physiologiae Plantarum, 37: 1737-1743.
6- Baskin C.C., and Baskin J. M. 2014. Seeds: Ecology, biogeography and evolution of dormancy and germination (2nd ed). Elsevier/Academic Press, San Diego, California, USA.
7- Bloomberg M., Sedcole J.R., Mason E.G., and Buchan G. 2009. Hydrothermal time germination models for radiata pine (Pinus radiata D.Don). Seed Science Research, 19: 171–182.
8- Bochet E., García-fayos P., Alborch B., and Tormo J. 2007. Soil water availability effects on seed germination account for species segregation in semiarid roadslopes. Plant and Soil, 295: 179 – 191.
9- Boddy L.G., Bradford K.J., and Fischer A.J. 2012. Population-based threshold models describe weed germination and emergence patterns across varying temperature, moisture and oxygen conditions. Journal of Applied Ecology, 49: 1225–1236.
10- Boroumand-Rezazadeh Z., and Koocheki A. 2006. Evaluation of cardinal temperature for three species of medicinal plants, Ajowan (Trachyspermum ammi), Fennel (Foeniculum vulgare) and Dill (Anethum graveolens). BIABAN (Desert Journal), 11, 11-16. (In Persian)
11- Bradford K.J. 1995. Water relations in seed germination. P.351–396. In: Kigel, J., Galili, G. (ed.), Seed Development and Germination. Marcel Dekker, New York,
12- Bradford K.J. 2002. Application of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50: 248–260.
13- Cave R.L., Birch C.J., Hammer G.L., Erwin J.E., and Johnston, M.E. 2011. Cardinal temperatures and thermal time for seed germination of brunonia australis (Goodeniaceae) and calandrinia sp. (Portulacaceae). HortScience, 46: 753–758.
14- Cheng Z., and Bradford, K.J. 1999. Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50: 89–99.
15- Chantre G.R., Batlla D., Sabbatini M.R., and Orioli, G. 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany, 103: 1291–1301.
16- Dahal P. and Bradford K.J. 1994. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4: 71–80.
17- Demir I., and Mavi K. 2004. The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus Thunb.) seeds. Scientia Horticulturae, 102: 467-473.
18- Ellis R.H, Covell S., Roberts E.H. and Summerfield R.J. 1986. The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea at constant temperatures. Journal of Experimental Botany, 37: 1503–1515.
19- Ertan, S.K. 2010. Modelling the effect of temperature on seed germination in some cucurbits. African Journal of Biotechnology, 9: 1343–1353.
20- Fenner M., and Thompson K. 2005. The ecology of seeds. Cambridge University Press, Edinburgh House, Cambridge. 250 p.
21- Fernandez G., and Johnston M. 1995. Seed vigor testing in lentil, bean, and chickpea. Seed Science and Technology, 23: 617-627.
22- Finney D.J. 1971. Probit analysis. Third edition. Cambridge University Press, Cambridge.
23- Gareca E.E., Vandelook F., Fernández M., Hermy M., Honnay O., Hermy M., and Honnay, O. 2012. Seed germination, hydrothermal time models and the effects of global warming on a threatened high Andean tree species. Seed Science Research, 22: 287–298.
24- Grundy A.C., Phelps K., Reader R.J., and Burston S. 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytologist, 148: 433–444.
25- Gummerson R.J. 1986. The effect of constant temperatures and osmotic potential on the germination of sugerbeet. Journal of Experimental Botany, 37:729–741.
26- Hasandokht M.R. 2012. Vegetables Production Technology. Selsele Press. Tehran. Iran. (in Persian)
27- Holt, J.S. and D.R. Orcutt. 1996. Temperature thresholds for bud sprouting in perennial weeds and seed germination in cotton. Weed Science. 44:523–533.
28- Kebreab E., and Murdoch A.J. 1999. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany,50 ): 655–664.
29- Kebreab E., and Murdoch A.J.2000. The effect of water stress on the temperature germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50): 655-664.
30- Kurtar E.S. 2010. Modelling the effect of temperature on seed germination in some cucurbits. African Journal of Biotechnology, 9: 1343–1353.
31- Larsen S.U., Bailly C., Côme D., and Corbineau F. 2004. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research, 14: 35-50.
32- Michel B.E. and Kaufmann M.R. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51: 914–916.
33- National Agriculture Statistics. 2017. Ministry of Jahad-Agriculture. Information and Communication Technology Center. Pp 116.
34- Ni B.R., and Bradford K.J. 1992. Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiology, 98: 1057–1068.
35- Nozari-nejad M., Zeinali E., Soltani A., Soltani E., and Kamkar, B. 2013. Quantify wheat germination rate response to temperature and water potential. Journal of Crop production, 6 : 117-135. (in Persian with English abstract)
36- Rowse H.R., and Finch-Savage, W.E. 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist, 158: 101–108.
37- Singh S., Singh P., Sanders D.C., and Wehner, T. C. 2001. Germination of watermelon seeds at low temperature. Report-Cucurbit Genetics Cooperative, 24: 59–64.
38- Steinmaus S.J., Timonthy S.P. and Jodie S.H. 2000. Estimation of base temperature for nine weed species. Journal of Experimental Botany, 51: 275– 286.
39- Wang R., Bai Y., and Tanino, K. 2005. Germination of winterfat (Eurotia lanata Moq.) seeds at reduced water potentials: testing assumptions of hydrothermal time model. Environmental and Experimental Botany, 53: 49–63.
40- Wen-Hu X., Fan Y., Baskin C. C., Baskin J.M., and Wang Y.R. 2015. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and Subalpine grassland. American Journal of Botany 102 : 649 – 660.

ارجاع به مقاله
صابرعلیس. ف., نستری نصرآبادیح., & شیرمحمدی علی اکبر خانیز. (2019). شبیه¬سازی پاسخ جوانه¬زنی هندوانه (Citrullus lanatus Thunb.) به دما و پتانسیل آب. علوم باغبانی, 33(4), 727-741. https://doi.org/10.22067/jhorts4.v33i4.80628
نوع مقاله
علمی - پژوهشی