Effects of B Toxicity on Vegetative Growth, Physiological Characteristics and Boron Distribution in Two Scion-rootstock Combinations of Almond (Prunus dulcis Mill.) Tree

Document Type : Research Article



Boron (B) toxicity is an important disorder that can limit plant growth in arid and semi-arid environments. It has been proven that use of tolerant rootstocks impede B uptake or transport to the aerial portions of plants. This may alleviate B toxicity in the scion, consequently improves the tolerance to excess B in the root zone. An experiment was conducted to find the effects of B toxicity on vegetative growth, physiological characteristics and B distribution of almond tree (Prunus dulcis Mill.) cv. “Ferragnes” grown in the controlled environment. Three levels of B (0.25, 10, 20 mg/L) from H3BO3 and two almond rootstocks (GF677, Tuono) were factorially combined in a completely randomized design with four replications. The results showed that B toxicity had significant effects on vegetative growth, physiological characteristics and B distribution in almond tree. With increasing B levels in nutrient solution, vegetative characteristics including leaf production percentage and main shoot elongation was decreased significantly. However, Fr/Tuono was affected less than Fr/GF677. Also, physiological characteristics such as electrolyte leakage percentage, proline content and leaf necrosis percentage were increased significantly in two scion-rootstock combinations. On the basis of these results, GF677 because of an inability to restrict uptake and/ or transport of excess B from root system to aerial parts of scion, have a higher sensitivity to B toxicity. Instead, Tuono via mechanism of preferential distribution of B in roots inhibited the accumulation of high concentration of B either in young leaves or meristematic tissues partially and protected these susceptible organs against injury caused by B toxicity. In conclusion, it seem that under excess B conditions Tuono rootstock have higher tolerance than GF677.