اثر مقدار یون‌های فلزی در بافت گلبرگ بر ظهور رنگ نهائی گل‌های ژربرا

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه گیلان

چکیده

برهمکنش بین رنگدانه‌های گل و یون‌های فلزی می‌تواند رنگ نهایی گلبرگ‌ها را تغییر دهد. یون‌های فلزی به واسطه تاثیری که بر اسیدیته گلبرگ‌ها و فعالیت آنزیم‌های مختلفی که در بیوسنتز، تخریب، تجمع و انتقال انواع رنگدانه‌ها دارند، می‌توانند نقش اساسی در تثبیت رنگ گلبرگ‌ها داشته باشند. در این تحقیق مقدار یون‌های فلزی و ارتباط آن با مولفه‌های رنگ گل در شش رقم ژربرا با رنگ‌های مختلف در مرحله شکوفائی مورد بررسی و مقایسه قرار گرفت. در بررسی مقدار یون‌ها در ارقام مختلف، تفاوت معنی‌داری از نظر آماری در مقدار مس مشاهده نشد. نتایج نشان داد که هرچه میزان آهن در گلبرگ‌ها افزایش می‌یابد، میزان تمایل به قرمزی و مقدار رنگ‌مایه گل‌ها بیشتر و شدت روشنائی گل‌ها کاهش می‌یابد، همچنین با کاهش میزان روی در بافت گلبرگ، تمایل به تیرگی رنگ افزایش می‌یابد. منیزیم نیز برعکس کلسیم، همبستگی مثبت و معنی‌داری با درجه رنگ‌مایه و تمایل به قرمزی و همچنین همبستگی منفی و معنی‌داری با شدت روشنائی یا شفافیت گلبرگ‌ها نشان داد. در مجموع در این مطالعه، از بین یون‌های ارزیابی شده در ژربرا یون‌های آهن، کلسیم و منیزیم ارتباط موثرتری با مولفه‌های رنگ نشان دادند. هم‌چنین مقدار یون‌های فلزی آهن، مس، روی، منگنز، کلسیم و منیزیم در بافت گلبرگ ارقام مختلف ژربرا به ترتیب در محدوده 012/0–0076/0، 004/0–0035/0، 003/0– 0017/0، 3200/0–0021/0، 97/2–18/2 و 79/1–45/1 میلی‌گرم در هر گرم وزن تر گلبرگ متغیر بود.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Metal Ion Contents in Petal Tissue on Perception of Flower Final Colors in Gerbera hybrid

نویسندگان [English]

  • A. Hatamzadeh
  • R. Akbari
  • R. Sariri
  • D. Bakhshi
University of Guilan
چکیده [English]

Interaction of floral pigments with metal ions can alter the final color of the petals. Metal ions can affect stability of flowers final color by altering vacuolar pH and activity of enzymes involved in biosynthesis, destruction, accumulation and transition of pigments. In this study, contents of metal ions of petal tissue and their relationships with parameters of petal color analyzed and compared in stage of full blooming in six varieties Gerbera with different colors. Investigation on metal ion contents in different varieties didn't show statistically significant difference in Cu2+ content. Results showed that enhancement of Fe2+ content in petals increased a* and C* parameters and decreased L* value. Also, reduction of Zn2+ amounts in petal tissue increased h* value. Unlike Ca2+, a positive significant difference observed between Mg2+ contents and parameters of C* and a*, also a negative significant difference between Mg2+ content and L* value. Ions of Fe2+, Ca2+ and Mg2+ presented more effective relationship with flower color parameters. Concentration of Fe2+, Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ in petal tissue were ranged to 0.0076-0.012, 0.0035-0.004, 0.0017-0.003, 0.0021-0.0032, 2.18-2.97, 1.45-1.79 mg g-1 FW, respectively.

کلیدواژه‌ها [English]

  • Chroma
  • Lightness
  • Absorption spectra
  • Metal ions
  • Gerbera hybrida
1- Aksamit-Stachurska A., Korobczak-Sosna A., Kulma A., and Szopa J. 2008. Glycosyltransferase efficiently controls phenylpropanoid pathway. BMC Biotech. 8, 25-40.
2- Ellestad G.A. 2006. Structure and chiroptical properties of Advancemolecular flower pigments. Chirality 18, 134-144.
3- Ferrer J.L., Austin M.B., Stewart C. and Noel J.P. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46, 356-370.
4- Ford C.M., Boss P.K., and Hoj P.B. 1998. Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O- glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to lucosylate anthocyanidins in vivo. J. Bio. Chem. 273, 9224-9233.
5- Fujiwara H., Tanaka Y., Fukui Y., Nakao M., Ashikari T. and Kusumi T. 1997. Anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Eur. J. Biochem. 249, 45-51.
6- Goto T., and Kondo T. 1991. Structure and molecular stacking of anthocyanins – Flower color variation. Angew. Chem. Int. Ed. 30, 17–33.
7- Gould K., Davis K. and Winefield C. 2009. Anthocyanins. Springer Press. LLC. 336 p.
8- Gribach R. and Austin S. 2005. Comparison of the Munsell and Royal Horticultural Society's color charts in describing flower color. Taxon 54:3, 771-773.
9- Jia N., Shu Q., Wang L., Du H., Xu Y., and Liu Z. 2008. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Sci. Hort. 117, 167–173.
10- Joshi C.P. and Chiang V.L. 1998. Conserved sequence motifs in plant S-adenosyl-Lmethionine- dependent methyltransferases. Plant Mol. Biol. 37, 663–674.
11- Kondo T., Yoshida K., Nakagawa A., Kawai T., Tamura H. and Goto T. 1992. Structural basis of blue-color development in flower petals from Commelina communis. Nature 358, 515-518.
12- M.Ronnier L. 2006. Applying color science in color design. Department of Color and Polymer Chemistry, University of Leeds, Leeds LS2 9JT, UK, Optics & Laser Technol. 38, 392–398.
13- Mazza G., and Miniati E., 1993. Anthocyanins in Fruits, Vegetables and Grains, CRC Press, Boca Raton. FL.
14- Miller R.S. Owens J., and Rorslet B. 2009. Plants and color: Flowers and pollination. Optics and Laser Technol. 43:2, 282-294.
15- Nakajima J.I., Tanaka Y., Yamazaki M., and Saito K. 2001. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem., 276, 25797-25803.
16- Nissan-Levi A., Ovadia R., Foreer I. and Oren-Shamir, M. 2007. Increased anthocyanin accumulation in ornamental plants due to magnesium treatment. J. Hort. Sci. Biotech, 82, 481–7.
17- Ogata J., Sakamoto T., Yamaguchi M., Kawanobu S. and Yoshitama K. 2001. Isolation and characterization of anthocyanin 5-O-glucosyltransferase from flowers of Dahlia variabilis. Plant physiol, 158, 709-714.
18- Razic S., Dogo S., Slavkovic L., and Popovic A. 2005. Metal determination in herbal drugs originating from medicinal plants of the family Lamiacae. J. Serb. Chem. Soc., 70:11, 1347-1355.
19- Reuveni M., Evenor D., Artzi B., Perl A. and Erner Y. 2001. Decrease in vacuolar pH during petunia flower opening is reflected in the activity of tonoplast H+-ATPase. J. Plant Physiol., 158; 991-998.
20- Sawada S., Suzuki H., Ichimaida F., Yamaguchi M.A., Iwashita T., Fukui Y., Hemmi H., Nishino T. and Nakayama T. 2005. UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J. Biol. Chem., 280, 899–906.
21- Seitz C., Ameres S. and Forkmann G. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett., 581, 3429-3434.
22- Seroczyńska A., Korzeniewska A., Sztangret-Wiśniewska J., Niemirowicz-Szczytt K. and Gajewski M. 2006. Relationship between carotenoids content and flower or fruit flesh color of winter squash (Cucurbita maxima Duch.). Folia Horticulyurae Ann., 18:1, 51-61.
23- Takeda K., Yanagisawa M., Kifune T., Kinoshita T., and Timberlake C.F. 1994. A blue pigment complex in flowers of Salvia patens. Phytochemistry 35, 1167-1169.
24- Tatsuzawa F., Ichihara K., Shinoda K. and Miyoshi K. 2010. Flower colors and pigments in Disa hybrid (Orchidaceae). S. Afr. J. Bot., 76, 49–53.
25- Toyama-Kato Y., Yoshida K., Fujimori E., Haraguchi H., Shimisu Y. and Kondo T. 2003. Analysis of metal elements of hydrangea sepals at various growing stages by ICP-AES. Biochem. J., 14, 237–241.
26- Tuzen M. 2003. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem. J., 74, 289–297.
27- Uddin J.A.F.M., Hashimoto F., Miwa T., Ohbo K. and Sakata Y. 2004. Seasonal variation in pigmentation and anthocyanidin phenetics in commercial Eustoma flowers. Sci. Hort. 100, 103–115.
28- Wellmann F., Griesser M., Schwab W., Martens S., Eisenreich W., Matern U. and Lukacin R. 2006. Anthocyanidin synthase from Gerbera hybrida catalyzes the conversion of (+)-catechin to cyanidin and a novel procyanidin, FEBS Lett. 580, 1642–1648.
29- Yoshida K., Kawachi M., Mori M., Maeshima M., Kondo M., Nishimura M. and Kondo T. 2005. The involvement of tonoplast proton pumps and Na_(K_)/H_ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol. 46, 407–415.
30- Yu O., Matsuno M. and Subramanian S. 2006. Flovonoid compounds in flowers: Genetics and Biotechnology. Floriculture, Ornamental and Plant Biotechnology, Global Science Books., 1: 282- 292.