نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشیار پژوهشی، بخش تحقیقات علوم زراعی-باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج

2 مرکز توسعه و تحقیق تولیدات طبیعی، دانشگاه بین المللی تکنولوژی کشاورزی ایالتی ساراواک، مالزی

چکیده

به منظور بررسی کود زیستی مایکوگرین بر رشد، عملکرد و کیفیت ریزغده سیب‌زمینی در شرایط تنش خشکی پژوهشی به صورت فاکتوریل درقالب طرح کاملاً تصادفی و در چهار تکرار در شرایط گلخانه انجام شد. بدین منظور بستر کشت به نسبت 2:3 (پیت: پرلیت) تهیه و با نسبت وزنی 1 درصد با کود زیستی مایکوگرین مخلوط شد. تیمارهای آزمایشی شامل ریزغده های دو رقم سیب‌زمینی (آگریا و مارفونا) و سطوح آبیاری با سه دور 5، 8 و 11 روزه بودند. پس از برداشت، ریزغده‌ها به اندازه‌های مختلف تفکیک شده و درصد ماده خشک آن ها نیز اندازه‌گیری شد. نتایج نشان داد که در تیمار شاهد ( دور آبیاری 5 روزه) گیاهان حاصل از ریزغده به طور معنی دار از مقدار نسبی آب برگ بیشتری نسبت به گیاهان در دو تیمار دیگر برخوردار بودند. اما گیاهان در دو دور آبیاری 8 و 11 روزه در مقایسه با شاهد پتانسیل اسمزی پایین تر و پرولین بیشتری داشتند و توانایی تنظیم اسمزی گیاهان با افزایش دور آبیاری با مصرف کود زیستی افزایش پیدا کرد. تفاوت معنی‌داری در میزان تولید ریزغده با اندازه متوسط و ریز در سه دور آبیاری مشاهده نشد. با این حال در تولید ریز غده درشت تفاوت تیمارهای آبیاری معنی دار بود. در دو دور آبیاری 5 و 8 روزه در مقایسه با تیمار 11 روزه به طور متوسط 62 درصد غده درشت تری تولید شد. در درصد ماده خشک ریز غده تولیدی سه سطح آبیاری وضعیتی مشابه داشتند. دو رقم سیب زمینی در مجموع واکنشی متفاوت در تولید ماده خشک ریزغده داشتند. در مجموع با نتایج این پژوهش مشخص شد که استفاده از کود زیستی مایکوگرین در کشت ریزغده سیب‌زمینی در شرایط معمول آبیاری و حتی با اعمال تنش ملایم (افزایش طول دوره آبیاری به 3 روز)، سبب افزایش عملکرد کمی و کیفی تولید ریزغده در گیاهچه ها می شود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Biofertilizer “Myco-green” on Water Relation and Efficiency of Potato Minituber Production in Drought Stress Condition

نویسندگان [English]

  • Kh. Parvizi 1
  • M. Chan 2

1 Associate Professor, Department of Horticulture Crops Research, Faculty member of Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.

2 Natural Product Research and Development Centre, Department of Biotechnology, University Technology MARA Sarawak, Malaysia.

چکیده [English]

Introduction Today biological fertilizers are suitable substitutes for chemical manure. Hence they can improve soil fertility in sustainable agriculture system (Mandal et al, 2007). Moreover, in some composition they are accompanied with plant growth promoting rhizibacteria (PGPR), namely Pseudomonas and some Bacillus species. These bacteria can improve growth rate of the plants by some physiological aspects namely, cidrophore acid production, increasing endogenously phytohormone and helping more phosphor absorption and fixation of biological nitrogen (Tilack et al., 2005). The symbiosis of mycorrhiza with plants confers numerous benefits to host plants including improved plant growth and mineral nutrient absorption, tolerance to diseases and stresses such as drought, temperature fluctuation, metal toxicity, salinity and other adverse conditions (Fortin et al, 2002. Ryan et al, (2003) and Smith and Reed, (2008).Mycorrhizal plants are capable of absorbing more water in lower potential of water as compared with non-mycorrhizal plants (Sanchez and Blanco, 2001). Micro propagation of potato by micro and mini tubers have been established for improving multiplication rate and possibility of reserving some more stock plants as germplasm. Multiplication of the minitubers already have been accompanied by lower establishment that causes low vigor and performance of the plant. This experiment was performedto study the effect of biological manure accompanied with mycorrhiza and plant growth promoting rhizobacteria on water relationship and vigor of the plantlets derived from minituber in water stress condition.
Material and Methods Myco-green is produced by Peat grow company in Malaysia and has been spreading in floriculture, seed beds, vegetable crops, seedling plant of oil palm and many other plants. The experiment was performedatthe University of International Technology Mara Sarawak (UITM). As first step, soil bed composition was combined with peat and perlite (1:3 ratio). Then it was completely mixed by Mycogreenbiofertilizers by 1 percent of weight ratio. Mixed soil bed and biofertilizer were transferred to boxes. Minitubers of two potato cultivars (Agria and Marfona) were cultivated in the boxes arranged with 6×8 cm distance. The test was conducted in a factorial experiment based on completely randomized design with four replications. The factors included three interval irrigation regimes (5, 8 and 11 days) and two potato cultivars. The amount ofwater supplement according to their treatment was evaluated by weighing the boxes and was calculated as the amount of field capacity base. Fertile grow as a completed micronutrient had been mixed thoroughly in the soil bedby 1% weight proportion because myco-green didnot possess it. Some water relation traits such as leafosmotic potential, relative water content (RWC), osmotic adjustment and leaf proline content were measured. The method described by Bierman and Liderman (10) was used for root colonization assessment. Mini-tuber obtained from any plantlet was weighed, arranged in four groups including less than one gram, between one to three grams, between three to five grams and more than five grams. To assess mini-tuber dry matter of any replication, three mini-tubers were randomly selected and sliced to one mm thick. The first group of samples were weighed-and then placed inside the drying oven for 48 hours at a temperature of 85ºC. The dried samples were weighed again and mini-tuber dry matter percentage was calculated. Two-way analysis of variance (ANOVA) of the data was carried out using SAS software (v. 8.02, SAS Institute, Cary, NC) and the means were compared by the Duncan’s Multiple Range Test.
Results and Discussions: Results- showed that application of myco-green biofertilizers had significant effect (p

کلیدواژه‌ها [English]

  • Minituberyield
  • Organic fertilizer
  • osmotic adjustment
  • Water deficiency
Boland nazar S., Naishaboori M., Asgharzadeh N., and Chaparzadeh N. 2009. The effects of Arbuscular mycorhizal fungi on water relation of Onion. Journal of Horticultural Science and Technology: 10 (4): 293-300 (in Persian with English abstract)
2- Parvizi K. 2013. Symbiotic effect of Arbuscular mycorrhiza on growth regulators levels, growth properties and yield of potato plantlets under in vitro and ex vitro condition Ph.D thesis of horticulture, Bu-Ali Sina University, Hamedan, Iran (in Persian with English abstract).
3- Abdul-Jaleel C., Manivannan P., Sankar B., Kishorekumar A., Gopi R., Somasundaram R., and Panneerselvam R. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60: 7–11.
4- Allen M.F., Smith W.K., Moore, T.S. and Christensen M. 1981. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis. New Phytologist, 88: 683-693.
5- Auge R.M. 2000. Stomatal behaviour of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function. Edited by Y. Kapulnik and Douds J.D.D. Kluwer Academic Publishers, Netherlands PP.360.
6- Auge R.M. 2001. Water relation, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11:3-42.
7- Auge R.M. 2004. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal Soil Science, 84:373-381.
8- Auge R.M., Schekel K.A., and Wample R.L. 1986. Greater leaf conductance of VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytologist, 103:107-116.
9- Bajaj Y.P.S., and Sopory S.K. 1988. Biotechnology of potato improvement, In Bajaj, Y.P.S. (eds). Biotechnology in Agriculture and Forestry 2. Springer-Verlag, Germany. P.429-454.
10- Bierman B., and Linderman R.G. 1980. Quantifying vesicular – arbuscular mycorrhizae: a proposed method toward standardization, New Phytology. 87: 63 – 67. Busse, M.D. and Ellis, J.R. 1984. Vesicular-arbuscular mycorrhizal (Glomus fasciculatus) influenceon soybean drought in high phosphorus soil. Canadian Journal of Botany, 63: 2290-2294.
11- Chapharzadeh, N., Khavari-Nejad R.A., Navari-Izzo F., and Izzo R. 2003. Water relation and ionic balance in Calendola officinalis L. under salinity conditions. Agrochimica, 117:69-79.
12- Davies J., Calderon F. T., and Huainan Z. 2005. Influence of arhuscular on growth, Yield, and leaf elemental concentration of 'Yungay' potatoes. Hort Science, 40: 381-385.
13- Duffy E.M., Hurley E., and Casseles A.C. 1999. Weaning performance of potato microplants following bacterization and micorrhization. Potato Research, 42: 521-527.
14- Ebhin Masto R., Chhonkar P.K., Singh D., and Patra A.K. 2006. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisoil. Soil Biology and Biochemistry, 38: 1577– 1582.
15- Fortin J.A., Becard G., Dalpe S., and St- Arnoud M.Y. 2002. Arbuscular mycorrhiza on root-organ cultures Canadian Journal Botany, 80: 1-20.
16- Goicoechea N., Antolin M.C., and Sanchez-Diaz M. 1997. Influence of arbuscular my-corrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant and Soil, 192: 261- 268.
17- Irrigoyen J.J., Einerich D.W., and Sanchez-Diaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiology Plantarium, 84:55-60.
18- Jensen C.R., Mogensen V.O., Mortensen C., Fieldsend J.K., Mildford G.F.J., Andersen M.N., and Thage J.H. 1996. Seed glocosinolate, oil and protein contents of fieldgrown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Research, 47:93-105.
19- Khalafallah A.A., and Abo-Ghalia H.H. 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal Apllied Science Research, 4:559-569.
20- Kumar A., and Singh D.P. 1998. Use of physiological indices as a technique for drought tolerance in oilseed Brassica species. Annual Botany, 81:413-420.
21- Mandal A., Patra A.K., Singh D., Swarup A., and Ebhin Masto R. 2007. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. BioresourceTechnology, 98: 3585–3592.
22- Migahed H.A., Ahmed A.E., and Abd El-Ghany B.F. 2004. Effect of different bacterial strains as biofertilizer agents on growth, production and oil of Apium graveolense under Calcareous soil. Journal of Agricultural Sciences, 12: 511-525.
23- Niemira B.A., Safir G.R and Bird G.W. 1995. Production of prenuclear mini-tubers of potato with peat based arbuscular mycorrhiza fungal inoculums. Agronomy Journal, 87: 942-946.
24- Phillips J.M and Hayman D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Mycology Society Journal, 55: 159-161.
25- Pozo M.J., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J.M., and Azcon-Aguilar C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on de-fence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany, 53: 525-534.
26- Ratti N., Kumar S., Verma H.N., and Gautams S.P. 2001. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martini var. motia by Rhizobacteria, AMF and Azospirillum inoculation. Microbiology Research, 156: 145-149.
27- Ruiz-Lozano J.M., and Azcon R. 1997. Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol-induced water stress. Symbiosis, 23:9-21.
28- Ruiz-Lozano J.M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13:309-317.
29- Ryan N.A., Deliopoulos T., Jones P., and Haydock P.P. 2003. Effects of mixed-isolate mycorrhizal inoculums on the potato- potato cyst nematode interaction. Annual Applied Biology. 143: 111-119.
30- Sanchez-Blanco M.J., Ferrnandez T., Morales M.A., Morte A., and Alarcon J.J. 2001. Variation in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glumus deserticola under drought conditions. Journal Plant Physiology. 161:675-682.
31- Siddiqui Z.A. 1998. Effect of a plant growth promoting bacterium on AM fungus and soil types morphogenesis. Applied Soil Ecology. 8: 77-88.
32- Smith S.E and Read D.J. 2008. Mycorrhizal symbiosis. 3rd edit. London Academic Press, 787p.
33- Subramanian K.S., Santhanakrishnan P., and Balasubramania P. 2006. Response of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulture, 107:245-253.
34- Tilak K.V.B.R., Ranganayaki N., Pal K.K., De R., Saxena A.K., Shekhar C., Shilpi M., Tripathi A.K., and Johri B.N. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science, 89: 136-150.
35- Tobar R., Azcόn R., and Barea J.M. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytologist, 126: 119-122.
36- Toro M., Azcon R., and Barea J. 1997. Improvement of arbuscular mycorrhiza devel-opment by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32)P) and nutrient cycling. Applied Environmental Microbiology, 63: 4408-4412.
37- Vazquez M.M., Cesar S., Azcon R., and Barea J.M. 2000. Interaction between arbus-cular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effect on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 15: 261-272.
38- Vessey J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586.
39- Vosatka M., and Gryndler M .1999. Treatment with culture fractions from pseudomonas putida modifies the development of Glomus Fistulosum mycorrhiza and response of potato to inoculation. Applied Soil Ecology, 11: 245-251.
40- Young C.C., Lai W.A., Shen F.T., Huang W.S., and Arun A.B. 2004. Characterization of multifunctional biofertilizer from Taiwan and biosafety considerations. International Symposium on Future Development of Agricultural Biotechnology Park, pp. 373-388.
CAPTCHA Image