اثر دو نوع اکسین ایندول بوتریک اسید، نفتالین استیک اسید و بسترهای کاشت بر ریشه‌زایی قلمه‌های رز مینیاتوری (Rosa hybrida)

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه تربیت مدرس

چکیده

گل رز مینیاتوری یکی از محبوب‌ترین گیاهان زینتی در جهان است که در سراسر دنیا به عنوان گیاه گلدانی و یا در فضای سبز پرورش داده می‌شود. تکثیر تجاری این گیاه عمدتاً از طریق قلمه‌ می باشد. به منظور بررسی اثر غلظت‌های مختلف ایندول بوتریک اسید، نفتالین استیک اسید و بسترهای کاشت مختلف بر ریشه‌زایی قلمه‌های رز مینیاتوری، آزمایشی در قالب فاکتوریل بر پایه طرح کامل تصادفی با سه تکرار و ۴۰ تیمار با ۳۶۰ قلمه اجرا گردید. در این تحقیق فاکتور اول تنظیم کننده رشد ایندول بوتریک اسید در چهار سطح (۰، ۱۰۰۰، ۲۰۰۰ و ۳۰۰۰ میلی‌گرم در لیتر)، فاکتور دوم تنظیم کننده رشد نفتالین استیک اسید در پنج سطح (۰، ۵۰۰، ۱۰۰۰، ۱۵۰۰ و ۲۰۰۰ میلی‌گرم در لیتر) و فاکتور سوم بسترهای متفاوت ریشه‌زایی شامل مخلوط حجمی از پرلایت، کمپوست ضایعات چای و ماسه به نسبت ۲:۲:۱، پرلایت، پیت و ماسه به نسبت ۲:۲:۱ بود. آنالیز آماری داده‌ها با نرم افزار SAS از روش مدل خطی تعمیم‌یافته LMG و مقایسه میانگین‌ها با آزمون حداقل اختلاف معنی‌دار در سطح احتمال ۵ درصد انجام شد. نتایج نشان داد که بالاترین درصد ریشه‌زایی قلمه‌ها در تیمار ۲۰۰۰ میلی‌گرم در لیتر ایندول بوتریک اسید بدست آمد، در حالی‌که اثر تیمار نفتالین استیک اسید و بسترهای متفاوت ریشه‌زایی بر درصد ریشه‌زایی معنی‌دار نبود. اثرات متقابل دوگانه و سه‌گانه تیمارها بر سایر صفات اندازه‌گیری شده از جمله تعداد ریشه اولیه، تعداد ریشه ثانویه و قطر ریشه معنی‌دار بود. اثرات متقابل دوگانه تیمار NAA و بستر ریشه‌زایی بر صفت تعداد ریشه اولیه معنی‌دار نبود. بیشترین میانگین تعداد ریشه در قلمه‌ها و قطر ریشه در بستر پرلایت، کمپوست ضایعات چای و ماسه به نسبت ۲:۲:۱ و در تیمار ترکیبی تنظیم کننده‌های مصنوعی وجود داشت.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of IBA and NAA, and Rooting Media on Propagation of Miniature Rose Cuttings (Rosa hybrida)

نویسندگان [English]

  • azam ranjbar
  • noorollah ahmadi
Tarbiat Modares University
چکیده [English]

Introduction: Miniature rose (Rosa hybrida) are well known as one of the world’s most popular ornamental plants cultivated worldwide as potted and/or bed plants. Nowadays, more than 100 million pots of miniature roses are propagated by stem cutting in the commercial greenhouses of European countries such as Denmark and Germany. Some treatments such as application of plant growth regulators and suitable rooting medium could be required for accelerating root formation in rose cuttings. Using plant growth regulators like natural or synthetic auxin is a pre-requirement for the initiation of adventitious root in some stem cuttings and it has been reported that the division of the first initiator cells of root depends on internal or synthetic auxin. Methods of application of these chemicals and suitable concentration could be related to several factors, importantly the plant varieties, type of cuttings and the time of cutting preparation. Various kinds of media such as soil, peat moss, perlite and vermiculite are used as bed substrate according to required ratio. Rooting media must provide appropriate moisture and air ventilation for cuttings establishment, which highly affect the cuttings root formation. Appropriate procedure for using wastes materials as culture bed, especially those materials that produced locally, is main aim of some studies to find an alternative medium in ornamental pot plant production. In this regards, evaluation of agricultural wastes to be used to culture bed and introducing suitable materials could be considered. Accordingly, the objective of the present study was to determine the effects of two types of plant growth regulators and bed combinations on rooting percentage of semi-hardwood cuttings in miniature rose.
Materials and Methods: In order to evaluate the effects of different concentrations of indolebutyric acid (IBA) and naphtaleneacetic acid (NAA), and two media with different composition on root formation of miniature rose stem cutting, this research was carried out as a factorial on the basis of randomized complete design (RCD) with three replications. Plant growth regulators including IBA at concentrations of 0, 1000, 2000 and 3000 mgl-1, concentrations of NAA at 0, 500, 1000, 1500 and 2000 mgl-1 were applied together with two types of rooting media. Media including mixing volume of perlite, tea waste compost and sand in a ratio of 1: 2: 2, and perlite, peat and sand in a ratio of 1:2:2 were mixed and applied in this experiment. Using SAS software, data was analyzed based on a generalized linear model (GLM) analysis and tested by least significant difference (LSD) at (P-value< 0.05).
Results and Discussion: Results showed that the highest rooting percentage of cuttings was obtained with 2000 mgl-1 of IBA, while no significant effect of NAA treatment and different rooting media on percentage of rooting was revealed. The two-fold and three-fold interaction of treatments on other measured traits such as primary and secondary root number and root diameter were significant. The two-fold interaction of NAA treatments and rooting media on the trait of primary root number were no significant. The highest root number and root diameter measured in medium containing perlite, tea waste compost and sand in a ratio of 1:2:2 for cutting received combined plant growth regulators.
Conclusions: Compost, the final product of organic residues degradation, improves soil physical characteristics such as soil aggregate formation and stability, water penetration, porosity, compressing resistance and nutrients availability. As well, it improves soil biological characteristics and in result, integration of compost with soil can increase growth, yield and quality of crop. There are also some evidences that in contrast of peat, compost contains plant growth regulators improved plant growth and development. Totally, considering our obtained results, in order to accelerate rooting formation in miniature rose cuttings, treatment of cuttings with synthetic plant growth regulators in medium containing perlite: tea wastes compost: sand (2:2:1) under alternate mist system is recommended. Organic materials activate root area as well as improving fertility of soil. They also play a role in supplying and releasing absorbable nutrients, root establishment, enhancing field capacity, reducing evaporation from soil surface and reducing expenses. Therefore, we emphasize on appropriate using of these components in order to obtain better productivity.

کلیدواژه‌ها [English]

  • Growth regulator
  • Peat
  • propagation
  • Tea waste compost
  • Semi-hardwood cutting
1. Abad M., Nouguera P., and Bures S. 2001. Nattional inventory of organic waste for use as growing media for ornamental potted plant production: Case study in Spain. Bioresource Technology, 77: 197-200.
2. Abad M., Noguera P., Puchades R., Maquieira A., and Noguera V. 2002. Physico-chemical properties of some coconut dusts for use as a peat substitute for containerized ornamental plants. Bioresource Technology, 82: 241–245.
3. Ahmadi N. 2012. Rooting and growth of cuttings from ethylene-low or ethylene-high sensitive miniature rose genotypes under mist condition. Acta Horticulturae, 952: 893-898.
4. Arancon N Q., Edwards C. A., Bierman P., Welch C., and Metzer J. D. 2004. 'Influence of vermicomposts on field strawberries: effect on growth and yields'. Bioresource Technology, 93: 145–153.
5. Arteca R. N. 1996. Plant growth substances: principles and applications. Chapman and Hall, PP. 332.
6. Asghar H. N., Ishaq M., Zahir Z. A., Khalid M., and Arshad M. 2006. Response of radish to integrated use of nitrogen fertilizer and recycled organic waste. Pakistan Journal of Botany, 38(3): 691-700.
7. Atiyeh R. M., Edwards C. A., Subler S., and Metzger J. D. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physiochemical properties and plant growth. Bioresource Technology, 78: 11-20.
8. Atiye R. M., Lee S., and Edwards C. A. 2002. The influence of humic acids derived from earthworm processed organic wastes on plant growth. Bioresource Technology, 84: 7-14.
9. Awang Y., Shaharom A. S., Mohammad R. B., and Selamatm A. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Agriculture and Biological Sciences, 4(1): 63-71.
10. Beretta D., Vanoli M., and Eccher T. 1988. The influence of glucose, vitamins and IBA on rooting of Camellia shoots in vitro. Acta Horticulturae, 227: 473 – 475.
11. Bevacqua R. F., and Mellano V. 1993. Sewage sludge compost’s cumulative effects on crop growth and soil properties. Compost Science and Utilization. Spring, 1993: 34-37.
12. Bilderback T. E., and Lorscheider M. R. 1992. A comparison of physical properties of double processed pine bark to other selected propagation substrates and their effects on rooting response of three ornamentals. NCAN Nursery Notes. 25(1): 35-38.
13. Blythe E. K., sibley J. L., Ruter J. M., and Tilt K. M. 2004. Cutting propagation of foliage crops using a foliar application of auxin . Scientia Horticulturae. 103: 31-37.
14. Carelli B. P., and Echeverrigaray S. 2002. An improved system for the in vitro propagation of rose cultivars. Scientia Horticulturae. 92(1): 69-74.
15. Chen Y., Inbar Y., and Hadar Y. 1988. Composted agricultural wastes as potting media for ornamental plants. Soil Science, 145: 298-303.
16. Clik I., Ortas I., and Likik S. 2004. Effect of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78 (1): 59-67.
17. Epstein E., and Ludwig‐Müller J. 1993. Indole‐3‐butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiologia plantarum, 88(2): 382-389.
18. Gupta V. N., and Kher M. A. 1989. Studies on the rooting of Dombeya natalensis by semihardwood cutting under intermittent mist with the aid of auxins. C. A. B International. 3 p.
19. 19- Jalili M. 1997. Study the effects of medium on root formation of grape cutting. Journal of Agricultural Sciences and Natural Resources. 1 (2): 31-38. (in Persian).
20. Jankauskiene J., and Brazaityte A. 2008. Lithuanian Institute of Horticulture Kauno. 27 (2) : 285-294.
21. Hartman H. T., Kester D. E., and Davies F. T. 1975. Plant propagation principles and practices. Prentice Hall Inc Newjersey.
22. Hartman H.T., Kester D.E., and Davies F.T. 1990. Plant Propagation: Principles and Practices, 5th Edition. Englewood Cliffs, Prentice Hall Inc Newjersey. 647p.
23. Ikeda H., Tan Y. A., and Oda M. 2001. Effects of soilless medium on the growth and fruit yield of tomatoes supplied with urea and/or nitrate. Acta Horticulturae. 548: 157-164.
24. khaligi A., and padasht-Dehkayee M. N. 2000. Iranian Jornal Agricultural Sciences. 31 (3): 557-565 (in Persian).
25. Khosh khoi M. 2003. Multiplication plant (plant propagation) Principles and Practices (Volume II). Shiraz University Press, P ; 100. (in Persian).
26. Kigomo B. 2007. Guidelines for Growing Bamboo, Kenya Forestry Research Institute. PP.13
27. Leakey R., Mesen J., Tchoundjeu Z., Longman K., Dick Jmcp N. A., Matin A., Grace J., Munro R., and Muthoka P. 1990. Low-technology techniques for the vegetative propagation of tropical trees. Commonwealth Forestry Review, 69: 247-257.
28. Lee Y. S., and Bartlett R. J. 1976. Stimulation of plant growth by humic substances. Soil Science Society of America Journal, 40: 876-879.
29. Lee J. J., Park R. D., Kim Y. W., Shim J. H., Chae D. H., Rim Y. S., Sohn B. K., Kim T. H., and Kim K. Y. 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology, 93:21-28.
30. Long J. C. 1932. The influence of rooting media on the character of roots produced by cuttings. American Society for Horticultural Science, 29(3): 352-355.
31. Lumsden R. D., Millner P. D., and Lewis J. A. 1986. Suppression of lettuce drop caused by Sclerotinia minor with composted sewage sludge. Plant Disease, 70(3): 197-201.
32. Macdonald B. 1990. Practical woody plant propagation for nursery growers. Timber press, PP. 670.
33. Malcolm R. E., and Vaghuan D. V. 1979. Humic substances and phosphatase activies in plant tissues. Soil Biology and Biochemistry, 11:253-259.
34. Mastouri F., Hassandokht M. R., and Dehkaei M. P. 2005. The effect of application of agricultural waste compost on growing media and greenhouse lettuce yield. Acta Horticulturae, 697, 153.
35. McCann S. 1985. Miniature roses for home and garden: ARCO.
36. Mohammed S., and Kanimarani S. A. 2013. Effect of soil media on the rooting of Myrtus communes and Berberis thunbergii semi-hardwood cuttings. IOSR J. Agriculture and Veterinary Science, 5(4): 55-60.
37. Nanda K. K., and Anand V. K. 1970. Seasonal changes in auxin effects on rooting of stem cuttings of Populus nigra and its relationship with mobilization of starch. Physiology Plantarum, 23: 99-107.
38. Nordstrom A. C., Jacobs F. A., and Eliasson L. 1991. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiology, 96: 856–861.
39. Pati P. K., Prakash O., Sharma M., Sood A., and Ahuja P. S. 2004. Growth Performance of Cuttings Raised from in vitro and in vivo Propagated Stock Plants of Rosa damascena Mill. Biologia plantarum, 48(4): 609-611.
40. Pinton R., Cesco S., Iacolettig G., Astolfi S., and Varanini Z. 1999. Modulation of NO3-uptake by water-extractable humic substances: involvement of root plasma membrane H+ATPase. Plant and Soil, 215: 155 - 161.
41. Puri S., and Verma R. C. 1996. Vegetative propagation of Dalbergia sissoo Roxb using softwood and hardwood stem cuttings. Journal of Arid Environments, 34(2): 235-245.
42. Quedraogo E., Mndo A., and Zombre N. P. 2001. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agriculture, Ecosystem and Environment, 84: 259-266.
43. Smith C. A., and Hall D. A. 1994. The development of perlite as a potting substarate for ornamental plants. Acta Horticulturae, 361: 159-166.
44. Tchoundjeu Z., and Leakey R. R. B. 1998. Vegetative propagation of Prunus africana, effect of rooting medium, auxin concentration and leaf area and cutting length. New Forest, 11: 125–136.
45. Tinus R. W., and McDonald S. E. 1979. How to grow tree seedlings in containers in greenhouses. General Technical Report Rm–60. Washington, DC: Rocky Mountain Forest and Range Experimental.Station, USDA Forest Service.
46. Tomati U., Grappelli A., and Galli E. 1988. The hormone-like effect of earthworm cast on plants growth. Biology of Fertility Soils, 5: 288–294.
47. Toor R. K., and Savage G. P. 2005. Antioxidant activities in different fractions of tomato. Food Research International, 38: 487-494.
48. Van de pol Peter A. 2000. Promotion of root formation with other effects, Rhizophon.
49. Webber C. L., Whitworth J., and Dole J. 1999. Kenaf (Hibiscus cannabinus L.) core as a containerized growth medium component. International Crops Production, 10: 97–105.
50. Widiastoety D., and Soebijanto. 1988. Rooting of stem cuttings of Hibiscus rosa-sinensis. Buletin Penelition Horticultura, 16: 73-83.
51. Wise F. C., Blazich F. A., and Hinesley L. E. 1985. Propagation of Abies fraseri by softwood stem cuttings. Canadian Journal of Forest Research, 15(6): 1172-1176.
52. Zachariakis M., Tzorakakis E., Kritsotakis I., Siminis C. I., and Manios V. 2001. Humic substances stimulate plant growth and nutrient accumulation in grapevine rootstocks. Acta Horticulturae, 549: 131-136.