بررسی کاربرد بسته بندی نانو بر ماندگاری و خواص کیفی میوه هلو رقم آلبرتا

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

هلو به‌عنوان میوه‌ای فرازگرا سرعت و شدت تنفس بالایی داشته و عمر نگهداری بسیار پایینی دارد، به همین خاطر استفاده از تکنولوژی مناسب پس از برداشت برای افزایش عمر محصول ضروریست. امروزه استفاده از فناوری نانو به‌عنوان گزینه‌ای مناسب برای افزایش عمر نگهداری میوه‌ها مطرح ‌می‌باشد. به‌منظور بررسی تأثیر بسته‌بندی نانو بر ماندگاری و خواص کیفی میوه هلو رقم آلبرتا از بسته‌بندی نانو نقره، نانو کامپوزیت نقره و سیلیکا و بسته‌بندی پلی‌پروپیلن استفاده شد. آزمایش به‌صورت فاکتوریل در قالب طرح پایه کاملاً تصادفی و در چهار تکرار انجام پذیرفت و خواص کیفی میوه پس از ١٥، ٣٠ و ٤٥ روز نگهداری در سردخانه با دمای صفر تا ٥/٠ درجه سانتی گراد و رطوبت نسبی ٨٥ تا ٩٥ درصد اندازه‌گیری شد. خواص کیفی از جمله سفتی، کاهش وزن، pH، اسیدیته قابل تیتراسیون، مواد جامد محلول، اسید آسکوربیک، آنتیاکسیدان کل و فنل کل اندازه‌گیری شد. نتایج به‌دست آمده نشان داد که در پایان دوره نگهداری، میوه‌های هلو بسته‌بندی شده در ظروف نانو نقره، بیشترین میزان سفتی بافت، کاهش وزن، مواد جامد محلول و آنتیاکسیدان کل را داشتند. بسته‌بندی نانو نقره از افزایش میزان فنل کل میوه هلو جلوگیری کرد. همچنین در بسته‌بندی‌های نانو، اسیدیته قابل تیتراسیون در طی دوره نگهداری نسبت به بسته‌بندی پلی‌پروپیلن بسیار پایینتر بود. نتایج نشان داد که بسته‌بندی‌های نانو نقره و نانو کامپوزیت نقره و سیلیکا باعث حفظ بهتر میزان اسید آسکوربیک در مقایسه با بسته‌بندی پلی‌پروپیلن شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Nano Packaging on Storage Life and Quality Attributes of Elberta Peach

نویسندگان [English]

  • Mohammadreza Asghari
  • mohammad Tohidian
Urmia University
چکیده [English]

Introduction: Asaclimactericfruit, peach has a highrespiration rateandvery lowshelf life. Nowadays theuse ofappropriatepostharvesttechnologiesto increase fruit postharvest lifeis necessary.Use of nanotechnologyis considered asan effective method to increase fruit postharvest life. Nanotechnology isused extensivelyinallstages of production, processing, storage, packagingand transport ofagriculturalproducts.The objective of this study was to investigate the effect of silver and silica nanocomposites, nanosilver and polypropylene containers on shelf-life and preservation of peach qualitative characteristics (Prunuspersicacv. Elberta) such as titrable acidity, soluble solids, ascorbic acid, total antioxidant and total phenolics content in cold storage after the harvest.
Materials and Methods: To determine the effect of nanopackaging onshelf life andqualitativecharacteristics ofElberta peaches,the experiment was conducted in a factorial based on a completely randomized design with two treatmentsand four replications.The first factor consisted of nanopackagingnanosilver, silver and silica nanocompositesandpolypropylenepackaging, and the second factor was coldstorage periods of15, 30 and 45 daysattemperaturesfrom 0 to0/5 °C and a relative humidityof 85to 95%.In general, the experiment consisted of 36 experimental units, and each includinga container with four Elberta peach fruits.Data were analyzed by using SAS software, and Microsoft Office Excel 2010 software was used to plot the graphs.Duncan's multiple range test was used to compare the means of treatments.
Results and Discussion: At the end of the maintenance period, the highest firmness of peach texture was related to nanosilver containers. The main cause of fruit softening is the destruction of cell wall components, especially pectin, which is caused by certain enzymes such as polygalactronase. Whenstorage timeincreased, polypropylene containers showed a higher weight loss compared to nanocomposite containers, thus the results indicated that nanopackaging had a greater effect on preventing weight loss, which could be attributed to the formation of better barrier against water molecules. Nanoparticles and polypropylene containers up to 30-daystorage period preserved the pH of the product to some extent and prevented it from increasing too much. However, with an increase in storage time from 30 to 45 days, the pH of all dishes showed sharpincrease. In most treatments, fruits grew during the maintenance period, which is due to the reduction of organic acids. The lowest levels of organic acids reduction were recorded in polypropylene and nanosilver treatments. Generally, organic acids decreased as a result of respiration or becoming sugars, whichcan bedirectly related to metabolic activity. Maintaining organic acids in fruits is the result of a slowdown in the processes of ripeningand aging and reduction inrespiration and other metabolic activities. The results showed that in all the three treatments, the amount of soluble solids up to 15-day periodshowed an increasing trend, and after the end of day 30, it stopped in nanosilver and polypropylene treatments, and soluble solids were retained but reduced in nanocomposite treatment showed that this decrease. Nanocomposite containers exhibited the best performance in maintaining ascorbic acid content and preventing its changes, while ascorbic acid content in nanosilver and polypropylene containers varied greatly, thoughthere were no significant differences among thetreatments. Low oxygen environments, such as packaging containers, can inhibit ascorbic acid changes during maintenance by inhibiting oxidation. The results showed that total antioxidant level was almost identical in all treatments at the end of maintenance. Antioxidant activity has a close relationship with phenolic compounds, flavonoids and vitamins. The antioxidant capacity of fruits and vegetables is related to enzymatic and non-enzymatic compounds such as vitamin C, phenolic compounds, and carotenoids. Treatments reducingrespiration and producingethylene can reduce the rate of aging,the rate of free radical production and the consumption of antioxidants. Based on the results, on the day 30 in all treatments, the amount of phenolic compounds initiallyincreased, which is normal in red fruits, but afterwards decreased in all treatments mainly due to the increased activity of the polyphenol oxidase enzyme and the progression of aging. Increasing the amount of phenol on the day 30 can be attributed to decreased activity of the polyphenol oxidase enzyme and the oxidative stress associated with high concentrations of oxygen.
Conclusion: Nanopackaging increased the shelf life and qualitative properties of peach fruit. Nanotechnology has a simple and fast process for industrialization compared to other methods of keeping food products. As a result, the use of modern technologies such as nanopackaging can improve the taste, favor, quality of food and the storage of crops, especially fruits and vegetables.

کلیدواژه‌ها [English]

  • Ascorbic acid
  • Nanocomposite
  • Nanosilver
  • Total of antioxidant
  • Totalphenolics
1- Asghari M.R. 2008. Determination of the effect of salicylic acid application in post-harvest stage on quality properties, decay index and storage life in some cultivars of apple, pear and grapes. Final report of the research project. (in Persian)
2- Asghari, M.R., Hajitagilo, R., & Jalilimarandi, R. 2009. Postharvest application of salicylic acid before coating with chitosan affects the pattern of quality changes in table grape during cold storage. In 6th InternationalPostharvest Symposium, Antalya, Turkey, 8-12.
3- Ayala-Zavala J.F., Wang S.Y., Wang C.Y., and Gonzalez-Aguilar G.A. 2004. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT - Food Science and Technology. 37: 687-695.
4- Benzie I.F.F., and Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP assay. Annual Biochemistry. 239: 70-76.
5- Binesh M., Mortazavi S., Armin M., and Moradi. M. 2010. Evaluate the effect of silver and titanium dioxide nanocomposite on packaging used for holding Mazafati date on its microbial changes during storage life. Journal of Food Science and Technology. second year. 1: 1-8. (in Persian).
6- Emamifar A., Kadivar M., shahedi M., and Soleymanianzad S. 2011. Evaluation of the effect of silver and zinc oxide nanocomposite containing on the storage life of fresh orange juice. Iranian Journal of Nutrition and Food Technology. Sixth year. 1: 57-67. (in Persian)
7- Esteve M.J., Farre R., and Frigola A. 1995. Changes in ascorbic acid content of green asparagus during the harvesting period and storage. Journal of Agricultural and Food Chemistry. 43: 2058-2061.
8- Gonzalez-Roncero, M.I., B.P.F. Day, 1998. The effect of elevated oxygen and carbon dioxide modified atmosphere on psychrotropic pathogens and spoilage microorganisms associated with fresh prepared produce. CCFRA Research Summary Sheet 98, CCFRA, Chipping Campden, UK.
9- Hongmei Li, Feng Li, Lin Wang, Jianchun Sheng, Zhihong Xin, Liyan Zhao, Hongmei Xiao, Yonghua Zheng and Qiuhui Hu. 2009. Effect of nanopacking on preservation quality of Chinese jujube (Ziziphus jujuba Mill. cv. inermis (Bunge) Rehd). Food Chemistry. 114: 547-552.
10- Jalilimarandi R. 2007. Pomology. Urmia University Jihad Publications. (in Persian)
11- Jasso de Rodrıguez D., Hernandez-Castillo D., Rodrıguez-Garcıa R., and Angulo-Sanchez J.L. 2005. Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Industrial Crop Production. 21: 81-87.
12- Kader A.A., and Mitchell F.G. 1998. Postharvest physiology. In: La Rue, J.H. and Johnson, R.S. (eds) Peaches, plums nectarines: growing and handling for market. University of California, Division of Agriculture and Natural Resources, 3331: 154-164.
13- Kittur F., Saroja N., Habibunnisa and Tharanathan R. 2001. Polysachharide based composite coating formulations for shelf life extension of fresh banana and mango. European Food Reserch and Technology. 206: 44-47.
14- Leja M., Mareczek A., and Ben J. 2003. Antioxidant properties of two apple cultivars during long-term storage. Food Chemistry. 80: 303-307.
15- Li H., and Yu T. 2001. Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. Journal of Science Food Agricalture, 81: 269-274.
16- Ling Zhou, Sining Lv, Guiping He, Qiang He, and Bi Shi. 2011. Effect of PE/Ag₂O nanopackaging on the quality of apple slices. Journal of Food Quality, 34: 171-176.
17- Manning K. (1993) Soft fruits In: Taylor JE, Tucker GA, eds. Biochemistry of fruit ripening. Cambridge, UK: Chapman and Hall, 347-373.
18- Marinova D., Ribarova F., Atanassova M. 2005. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy. 40: 255-260.
19- Milda E. E., Kerry C.H. 2009. Edible Films and Coatings for Food Applications. Springer Dordrecht Heidelberg London New York.
20- Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science. 7: 405-410.
21- Perkins-Vaezie P. 2007. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest biology, Technology. 10: 1005-1016.
22- Qiuhui Hu, Yong Fang, Yanting Yang, Ning Ma and Liyan Zhao. 2011. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Research International. 44: 1589-1596.
23- Raskin I, 1992. Salicylic, a new plant hormone. Plant Physiology, 99: 799-803.
24- Valipur Motlaq N., Mosavian H., and Mousavian H. And Mortazavi S. 2008. Effect of packages containing silver nanoparticles on the microbial and apparent properties of barberry compared to conventional polyethylene packages. Journal of Iranian Food Industry Researches. Vol. 5. 2: 75-87. (in Persian)
25- Waterhouse A.L. 2002. Determination of total phenolics. In: Wrolstad, R.E. (ed.), Current Protocols in Food Analytical Chemistry. John Wiley and Sons, New York. 1: 1.1.1-1.1.8.
26- Yaman O., and Bayoindirli L. 2002. Effects of an edible coating and cold storage on shelf life and quality of cherries. Lebensmittel- Wissenchaft and Technologie. 35: 146-150.
27- Zagory D., and Kader A.A. 1989. Quality maintenance in fresh fruits and vegetables by controlled atmospheres, p. 174-188, In: J.J. Jen (ed), Quality Factors of Fruits and Vegetables-Chemistry and Technology. American Chemical Society, Washington, D.C.
28- Zandi k., Naseri N., Weisany W., Esmaiili M., and Bazargan I. 2012. Effects of nano-composites packaging and calcium chloride containers on quality characteristics and storage life of Siah Mashhad cherry cultivar. Technical Journal of Engineering and Applied Sciences. 10: 346-353.
29- Zheng Y., Wang S.Y., Wang C.Y., and Zheng W. 2007. Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT. Society of Food Science and Technology. 40: 49-57.