بررسی اثر تعدیل کنندگی کلرید‌پتاسیم بر شاخص‌های رشدی و فتوسنتزی دو رقم گیاه دارویی خردل (Parkland و Goldrush) در شرایط تنش شوری حاصل از کلریدسدیم

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

کلرید پتاسیم به عنوان یک عنصر غذایی مهم برای محصولات زراعی و همچنین کاهنده شوری در زمین‌های تحت تنش شوری محسوب می‌شود. به منظور مطالعه اثر تعدیل‌کنندگی شوری ناشی ازکلریدسدیم توسط کلریدپتاسیم در گیاه خردل آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی در گلخانه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد اجرا شد. تیمارهای آزمایش شامل ترکیب دو سطح KCl (شاهد و 20 میلی مولار) در چهار سطح NaCl (شاهد،30، 60 و90 میلی‌مولار) به عنوان عامل اول و دو رقم خردل (Parkland و Goldrush) به عنوان عامل دوم بود. برهمکنش تیمار سدیم و پتاسیم با عامل رقم در صفات وزن خشک ریشه و اندام هوایی، سطح برگ، فتوسنتز، هدایت روزنه‌ای، محتوای رطوبت تسبی، پایداری غشا و مقدار کلروفیل معنی‌دار شد. حداکثر مقدار فتوسنتز (14 میکرومول در مترمربع در ثانیه) در رقم Goldrush و تیمار 20 میلی‌مولار کلریدپتاسیم بدون کلریدسدیم، بیشترین هدایت روزنه‌ای (114 میکرومول در مترمربع در ثانیه) در گیاهان شاهد رقم Goldrush، بیشترین محتوای آب نسبی در گیاهان شاهد و در ارقام Goldrush و Parkland (به ترتیب 67/79 و 47/89 درصد) و همین صفت در تیمار 20 میلی‌مولار کلریدپتاسیم بدون کلریدسدیم رقم Goldrush به مقدار 27/71 درصد بود. ضمن اینکه بیشترین پایداری غشا نیز در رقم Goldrush و تیمار 20 میلی‌مولار کلریدپتاسیم بدون کلریدسدیم مشاهده شد. همچنین نتایج نشان داد که با افزایش غلظت سدیم و پتاسیم حجم ریشه کاهش می‌یابد که در تیمارهای 90 میلی‌مولار کلرید سدیم بدون کاربرد کلرید پتاسیم و 90 میلی‌مولار کلرید سدیم همراه با 20 میلی‌مولار کلرید پتاسیم به کمترین میزان رسید. به طور کلی با افزایش شوری حاصل از کلریدسدیم صفات مورفولوژیک و فیزیولوژیک اندازه‌گیری شده خردل کاهش یافت، و در تیمار استفاده از کلریدپتاسیم در غلظت 20 میلی‌مولار بدون کلریدسدیم کمترین مقدار تعرق و بیشترین شاخص پایداری غشا (100درصد)، عدد کلروفیل متر (3/30)، فتوسنتز (2/11 میلی مول بر متر مربع در ثانیه) در همین تیمار مشاهده شد. ضمن اینکه رقم Goldrush در تحمل شوری نسبت به Parkland نتایج بهتری از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Mitigated Effects of KCl on Growth and Physiological Index in Mustard Plant (Parkland and Goldrush) Under Salinity Stress

نویسندگان [English]

  • morteza goldani
  • Maryam Kamali
  • Mohammad ghiasabadi
Ferdowsi University of Mashhad
چکیده [English]

Introduction: Salinity tolerance in plants can increase the importance of it as a result of the decreasing availability of high-quality irrigation water. Saline irrigation water can have many negative effects on crops. When irrigation water has high salinity, the salt may precipitate on the leaves as the water evaporates. Thus it can result in foliar uptake and phytotoxicity. The irrigation water may also cause accumulation of salt in the substrate, which may lead to salt uptake by the plants. Salt injury occurs when too much NaCl accumulates in the substrate. When excessive concentrations of NaCl are present in the soil, water uptake may be inhibited and it causing a physiological drought stress. However, potassium is required by plants in amounts (in kg unit) of similar or greater than nitrogen (N). K Uptake by the plant is highly selective and closely coupled to metabolic activity. At all levels in plants, within individual cells, tissues and in long-distance transport via the xylem and phloem, K exists as a free ion in solution or electrostatically bound cation. Potassium takes part in many essential processes such as enzyme activation, protein synthesis, photosynthesis, phloem transport, osmoregulation, cation-anion balance, stomatal movement and light-driven nastic movements. Potassium Chloride (KCl) is used as a source of nutrients in agricultural development and also used as relieve salinity stress.
Materials and Methods: In order to study the mitigation effects of KCl on salinity (NaCl) in mustard plant (Parkland and Goldrush), an experiment was carried out at the Research Greenhouse, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. The experiment was managed as a factorial arrangement based on completely randomized design in three replications. Treatments were included NaCl (0, 30, 60 and 90 mM) and KCl (0 and 20 mM) and two cultivars.
Relative water content was calculated by the following formula using leaf disc obtained from a young leaf of each plant.
(DW+ FW/ DW+ TW)*100FW=fresh weight, DW=dry weight, and TW=turgid weight
Electrolytic leakage was calculated by the following formula:
EL=L1/L2 where L1 is electric conduction of leaf after putting in the deionized water in 25°C and L2 is the electric conduction of the autoclaved samples.
Leaf area was measured by Leaf area meter. Shoot and root dry weights were determined after drying the samples in 75°C for 48 h.
Chlorophyll concentration was calculated by the fallowing formula:
Chla (μg/ml) = 15.65A666 – 7.340 A653
Chlb (μg/mml) = 27.05A653 – 11.21 A666
Analysis of variance was calculated using MSTAT-C.1software and means were compared by LSD test at probability level of 5%.
Results and Discussion: The results showed that the treatments of NaCl, KCl and interactions with cultivars were significantly different on dry weight, leaf area, photosynthesis, stoma conductivity and chlorophyll rate. The maximum shoot dry weight (3.44 g/plant) and photosynthesis rate was obtained from T2 (20 mMKCl and without NaCl). The maximum membrane stability index was obtained in Goldrush cultivar and T2. The minimum of these traits were observed in zero mMKCl and 90 mMNaCl. High level of NaCl (60 and 90 Mm) and increasing application of KCl could not improve all traits. According to the result of the analysis of variance increasing density of sodium chloride in planting areas has a special effect on the size of leaves, weight of dried plant and each leaf and dried root. This effect shows a meaningful variation between the weight of dried leaves and its dried root and shoots. The salty areas have a lot of negative ions like Magnesium, Chlorine, sodium and sulfate. These materials are harmful by themselves or cause affective disorder in plants metabolism. Salinity treatments applied to significant influence (p≤0.01) on the characteristics of photosynthesis, stomatal conductance and number of stomata was read out by SPAD. For example, sodium and potassium competition and chlorine and nitrate competition impairs the absorption of nutrients. The result of this reaction is that the plant needs more energy for producing organic matter so it loses most of its energy to resist against salt. This situation causes a low activity of the root and the growing of shoot consequently reduces. Also, weight and length of plant would reduce too. For example, existing potassium in salty lands causes the reduction of sodium in the shoot of plants. This research was done in a pot with the same amount of salt. Potassium causes the reduction of toxicity effects of sodium. This research showed that the potassium can regulate osmotic pressure and permeability of plant cell membranes and also cause to increase plant tolerance to salinity.
Conclusion: In salty condition, increasing the amount of sodium causes the reduction of potassium, compared with sodium. As a matter of fact this kind of reaction causes the reduction of potassium compared with sodium. We know that potassium can cause a suitable osmotic pressure and reduce the destructive effect of oxidation. So, amount of potassium more than sodium in salty lands is known as the standard resistance. In general, increasing the salinity of sodium chloride can decrease morphological and physiological traits of mustard. The use of potassium chloride in T2 treatment showed the best result. However, Goldrush cultivar showed better results compared with Parkland cultivar in salt tolerance.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Dry weight
  • Leaf area
  • Photosynthesis
  • Stoma conductivity
1. Abid M., Qayyum A., Dasti A. A., and Abdilwajid R. 2001. Effect of salinity and SAR ofirrigation water on yield, physiological growth parameters of Maize & properties of the soil. Journal of Research, Bahauddin Zakariya University, Multan, Pakistan. 12(1):26-33
2. Achilea O. 2002. Alleviation of salinity-induced stress in cash crops by multi-K (potassium nitrate), five cases typifying the underlying pattern. Acta Horticulture, 573: 43-48
3. Amir Mohammadi Meibodi S.A.M., and Ghare yazi B. 2003. Physiological Aspects and Breeding For Salinity Stress in Plants. Isfahan University of Technology Press.
4. Ashraf M., Mukhtar N., Rehman S., and Rha E. S. 2004. Salt induced changes in photosynthetic activity and growth in a potential medicinal plant Bishop`s weed (Ammi majus L.). Photosynthetica, 42(4): 543-550.
5. Atlassi Pak V., Nabipour M., and Meskarbashee M. 2009. Effect of salt stress on Chlorophyll content, Fluorescence, Na+ and K+ ions content in rape plants (Brassica, napus L.). Asian Journal of Agriculture Research, 3(2): 28-37.
6. Bardan N. M. 2006. Effect of potassium rate on barley growth and its mineral content under different salt affected soil conditions. Research journal of agriculture and biological sciences, 2(6): 512-519.
7. Benlloch M., Ojeda M. A., Romos J., and Prodriguez-Navarro, A. 1994. Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant Soil, 166: 117-123.
8. Bybordi A. 2011. Zinc, nitrogen and salinity interaction on agronomic traits and some qualitative characteristic of canola. African Journal of Biotechnology, 10(74), pp. 16813-16825.
9. Cakmak I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Plant Nutrition and Soil Science. 168: 521-530.
10. Cerda A., Pardines J., Botella M. A., and Martinez, V. 1995. Effect of potassium on growth, water relations and inorganic and organic solute contents for two maize cultivars grown under saline conditions. Journal Plant Nutrition, 18: 839–851.
11. Cheeseman J. M., and Wickens L. K. 1986. Control of Na+ and K+ transport in Speragularia morina. III. Relationship between ion uptake and growth at moderate Salinity. Journal of Plant Physiology, 67: 15-22.
12. Delgado I. C., and Sanchez-Raya A. J. 1999. Physiological response of seedling sunflower to salinity and K sources, Commun .Soil Science. Plant Annual, 30 (5-6).
13. Dere S., Gunes T., and Sivci R. 1998. Spectrophotometric determination of chlorophyll-a,b and total cartenoid contents of some Algae Species using different solvents. Turck. Journal Botany, 22: 13-17.
14. Farhodi R. 2011. The effect of salinity on growth, antioxidant enzyme activities and malondialdehyde concentration of rapeseed leaves. Iranian Journal of Field Crops Research, 9(1): 123-130
15. Flowers T. J., and Yeo A. R. 1995. Breeding for salinity resistance in crop plants: Where Next? Plant Physiology, 22:875-884.
16. Flowers T. J., Torke P. F., and Yeo A. R. 1977. The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28: 89-121.
17. Gadallah M. A. A. 1996. Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regulation, 20: 225-236.
18. Gauch H. G. 1972. Inorganic Plant Nutrition. PP. 395-426. Physiological Processes limiting Plant Productivity. Dowden, Hutchinson and Ross Inc., USA.
19. Gorji M., and Khoshgoftarmanesh A.H. 2011. Effect of Potassium and Calcium on Safflower Response to Sodium Chloride Salinity in Aquatic Environment. Journal of Sciences and Technology of Agriculture and Natural Resources, 53(4): 1-7.
20. Haghnia G.H. 2004. Plant tolerance to salinity. Mashhad university publishers.
21. Hall A.E. 2000.Crop responses to environment. United States of America. 248 p.
22. Jakob G., Ton J., Flors V., Zimmerli L.J., Metraux P., and Mauch- Mani B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its ABAResponse. Plant Physiology, 139: 267-274.
23. Jeschke W.D., and Nassery H. 1981. K+ - Na+ selectivity in roots of Triticum, Helianthus and Allium. Physiology Plant, 52: 217-224.
24. Kafi M., Borzoei A., Salehi M., Kamandi A., Masomi A., and Nabati J. 2009. Enviromental Stress on Plant Physiology. Mashhad University Jahad publication. (Translation).
25. Kafi M., Stowart D. 2001. The effects of salinity on growth and yield of nine cultivar of wheat. Journal of Agricultural Science and Technology. 12: No 1.
26. Kaya C., Higgs D., and Sakar E. 2002. Response of Two leafy vegetables grown at high to supplementary potassium and phosphorus during different growth stages. Journal Plant Nutrition, 25: 2663-2676.
27. Khorasaninejad S., Mousavi A., Soltanloo H., Hemmati Kh., and Khalighi A. 2010. The Effect of Salinity Stress on Growth Parameters, Essential oil Yield and Constituent of eppermint (Mentha piperita L). World Applied Sciences Journal, 11 (11): 1403-1407.
28. Khoshgoftarmanesh A.H. 2008. Principles of Plant Nutrition. Industrial University of Isfahan. edition 1 .pp.462
29. Kostas C., and Georgios P. 2006. Response of Two Olive Cultivars to Salt Stress and Potassium Supplement. Journal Plant Nutrition, 29(11): 2063-2078.
30. Marschner H. 1995. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, San Diego, NY.
31. Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25: 239-250.
32. Munns R., and Tester M. 2008. Mechanisms of salinity tolerance. Annual Review Plant Physioligy, 59: 651681.
33. Munns R., James K.A., and Lauchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5): 1025-1043.
34. Najafi F., Khavari-Nejad R. A., and Siah Ali M. 2010. The effects of salt stress on physiological parameters in summer savory (Satureja hortensis L.) plant. Journal of Stress Physiology & Biochemistry, 6(1): 14-21.
35. Nazarbeygi E., Lari Yazdi H., Naseri R., Soleimani R. 2011. The Effects of Different Levels of Salinity on Proline and A-, B- Chlorophylls in Canola. American-Eurasian Journal Agriculture and Environment Science, 10 (1): 70-74.
36. Netondo G.W., Onyango, and Beck E. 2004. Sorgum and salinity: II. Gas exchange and chorophyll fluorescence of sorgum under salt stress. Crop Science, 44: 806-811.
37. Qasim M., Ashraf M.M., Jamil A.M., Rehman Y.S.U., and Rha E.S. 2003. Water relations and gas exchange properties in some elite canola (Brassica napus L.) lines under salt stress. Annual Application of Biology 142: 307-316.
38. Raziuddin Farhatullah Hassan G.H., Akmal M., Salim Shah S., Mohammad F., Shafi M., Bakht J., and Zhou W. 2011. Effect of camium and salinity on growth and photosynthesis parameters of brassica species. Pakistan Journal of Botany, 43(1): 333-340.
39. Sabater B., Rodriguez M.I. 1978. Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetic on chlorophyllase levels, Physiology Plant, 43: 274-276.
40. Safarnejhad A, Sadr V.A., and Hamidi H. The effect of salinity on morphological properties of Nigella sativa. J. Plant Breeding and Genetics Res. Iran. 2007; 15 (1): 75 - 84 (In Persian).
41. Sairam R.K., Rao K.V., and Srivastava G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163: 1037–1046.
42. Sarahi Nobar, M., and Moradi, B. 2011. Effect of salinity stress on protein content, pigments, sugars and phenolic compounds in tissue culture of several species of Iranian fenugreek. Journal of Sciences, Islamic Republic of Iran, 36(2): 53-59.
43. Satti, S. M. E., and Lopez M. 1994. Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Science and Plant Analysis, 25: 2807-2823.
44. Schachtman D., and Munns R. 2002. Sodium accumulation in leaves of Triticum species thatdiffer in salt tolerance. Australia journal Plant Physiology, 19(3):21,331-340
45. Smart R.E. 1974. Rapid Estimates of Relative Water Content. Plant Physiology, 53(2):258-60.
46. Sreenivasulu N., Grimm B., Wobns U., and Weschke W. 2000. Diffrentl response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensetive seedling of foxtail millet. Physiology Plantarum, 109: 435-442.
47. Sudhir P., and Murthy S.D.S. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42: 481-486.
48. Tarchoune I, Degl’Innocenti E, Kaddour R, GuidiL, Lachaal M, Navari-Izzo F and Ouerghi Z. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimumbasilicum L. Acta Physiol Plant. 2012; 34 (2): 607- 15.
49. Timothy D. C., Epstein E., and Dvorak J. 1995. Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt tolerant wheat (lanphophyrum elongatum). Plant Physiology, 108: 1714-1715.
50. Van Horn, J. W. 1991. Development of soil salinity during germination and early seedling growth and its effect on several crops. Agricultural Management, 20: 17-28.