اثر ذرات دی اکسید تیتانیوم نانو و غیر نانو بر گلدهی و صفات مورفوفیزیولوژیک اطلسی ایرانی (Petunia x hybrida) تحت تنش شوری

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه تریت حیدریه

چکیده

تیتانیوم دارای اثرات سودمندی بر رشد، مورفولوژی، فیزیولوژی و همچنین فعالیت‌های متابولیسمی گیاهان دارد. از طرفی امروزه فناوری نانو دارای موارد استفاده ی گسترده‌ای در بخش کشاورزی است. به منظور بررسی اثر نانو ذرات تیتانیوم بر رشد و گلدهی اطلسی آزمایشی بر پایه طرح کاملا تصادفی طراحی و اجرا شد. فاکتور اول (A)، آبیاری با سه سطح شوری کلرید سدیم (0، 75 و 150 میلی مولار) بود. فاکتور دوم (B) به صورت دو سطح دی اکسید تیتانیوم و نانو دی اکسید تیتانیوم (وجود و عدم وجود نانو ذرات در دی اکسید تیتانیوم) و فاکتور سوم (C) به صورت شش غلظت 0، 5، 10، 15، 20 و 40 پی پی ام دی اکسید تیتانیوم و در 3 تکرار تعریف شد (شش غلظت ذکر شده هم در سطوح دی اکسید تیتانیوم و هم نانو دی اکسید تیتانیوم در نظر گرفته شد). نتایج نشان داد برهمکنش شوری، غلظت های دی‌اکسید‌تیتانیوم و وجود یا عدم وجود نانو ذرات بر مقدار کلروفیل و کارتنوئید، وزن اجزای گیاه، سطح برگ و تعداد گل اثر معنی‌داری داشته است. بیشترین مقدار کلروفیل کل در شاهد تنش و به ترتیب در غلظت‌های 20 و 40 پی‌پی‌ام دی‌اکسید‌تیتانیوم و 5 پی‌پی‌ام نانو دی‌اکسید‌تیتانیوم مشاهده شد. بیشترین سطح برگ در تیمار 15 پی‌پی‌ام نانو دی‌اکسید‌تیتانیوم به مقدار 608 سانتیمتر‌مربع بود. ضمن اینکه اطلسی‌های تیمار شده با 5 پی پی ام نانو دی‌اکسید‌تیتانیوم و در شرایطی که با آب مقطر آبیاری می‌شدند نسبت به سایر گیاهان قطر گل بیشتری (3/54میلیمتر) داشتند. به طور کلی محلول پاشی برگی دی‌اکسید‌تیتانیوم (در بیشترین سطح استفاده شده-40 پی پی ام) و نانو دی‌اکسید‌تیتانیوم (در کمترین غلظت های استفاده شد- 5، 10 و 15 پی پی ام) بر بهبود اثرات حاصل از تنش موثر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Impacts of Nanosized and Bulk Titanium Dioxide on Flowering and Morpho-physiological Traits of Petunia (Petunia hybrida) under Salinity Stress

نویسندگان [English]

  • Maryam Kamali 1
  • Mahmoud Shour 1
  • Hassan Feizi 2
1 Ferdowsi University of Mashhad
2 Torbat-e Heydarieh University
چکیده [English]

Introduction: Titanium is the ninth most abundant element and the second most transition metal found in the earth’s crust (about 6.320 ppm). There has been a rising demand for nanotechnology-based products in recent years, particularly in areas directly related to humans. Nanotechnology has many applications in agricultural research, such as in reproductive science and technology, the transfer of agricultural and food waste to energy and other helpful by-products through enzymatic nanobioprocessing.
An important effect of titanium compounds on plants used for improvement of yield (about 10–20%) in various crops. Other effects of titanium on plants are increasing contents of some essential elements in plant tissue; an increase in enzyme activity such as peroxidase, catalase, and nitrate reductase activities in plant tissue, and research has shown increased chlorophyll content in paprika (Capsicum anuum L.) and green alga (Chlorella pyrenoidosa). Nanotechnologyapplication is now widely distributed throughout life, and especially in agricultural systems. Nano particles, because of their physicochemical characteristics, have been considered the potential candidates for modulating the redox status and changing in seed germination, growth, performance, and quality of plants.nano-TiO2 has shown to be potential for agricultural application because of its photocatalytic disinfection and photobiological effects. Also,stalinizationof soils or waters is one of the world’s most serious environmental problemsin agriculture. During initial exposure to salinity, plants experience water stress, which in return reduces leaf expansion. during long-term exposure to salinity, plants experience to ionic stress, which can lead to premature senescence of adult leaves, which led to a reduction in the photosynthetic area available to support plants growth.However,a few studies have been done on the effects of nanoparticles on ornamental plants. Nanosized TiO2 is a frequently used nanoparticle, consequently there has been an exponential increase in data collection on the effects of TiO2 nanoparticles on different species. There is much less information on the effects of nanoparticles on plants compared to animals. Studies of the effects of TiO2 nanoparticles on plants provide information about the positive and stimulating effects as well as any negative impact. In this study, weaimedto findout the phytotoxicity or positive effects of different concentrations of Bulk TiO2 and nanosized TiO2 on plant growth of Petunia hybridain salinity stress.
Material and Method: experiments were done to assess the effect of different concentrationsof bulk and nanosized TiO2 on petunia growthin salinity stress in a factorial test based on completely randomized design with 3 replications in agriculture faculty of Ferdowsi University, Mashhad. There were 3 factors, including1- three concentrations (0, 75 and 150 mM) of NaCl, 2- bulk and Nanosized titanium dioxide and 3- six concentrations (0, 5, 10, 15, 20 and 40 ppm) of TiO2. Titanium dioxide treatments for foliar application was applied 5 times with intervals of seven days (three times before, and twice after starting salinity stress). The experiment was performed at the College of Agriculture, Ferdowsi University of Mashhad. during the flowering, flower number, corolla length, flower diameter and flower fresh weight were measured. At the end of the flowering phase, parameters such as leaf area, shoot and leaf fresh weight, lateral shoot number, leaf number, chlorophyll a, b, total and cartenoidwere measured. The data were subjected to Analysis of Variance, was done using Mstat-C statistical. The means were separated, using LSD test.
Results and Discussion: Results showed that interaction of salinity, bulk and nanosized titanium dioxide and titanium dioxide concentrationsweresignificanton total chlorophyll, cartenoides, biomass, leaf area and flower number. The highest amount of total chlorophyll concentrations was measured in 20 and 40 ppm TiO2 and 5 ppm Nano treatments, respectively. The highest leaf area (608 cm2) was in 15 ppm Nano treatment. Among levels of nano TiO2,foliar application with 5 ppm had the best flower diameter in general, foliar application of nano titanium dioxide and titanium dioxide have been effective in improving the effects of salinity stress. In addition, the use of titanium dioxide in the highest level (40 ppm) and use of nano titanium dioxide in less concentration in Petunia plant had better effect on morphological traits. An important effect of titanium compounds on plants used for various crops is yield improvement. The positive effects of TiO2 could be probably due to the antimicrobial properties of engineered nanoparticles, which can enhance strength andresistance of plants to stress.

کلیدواژه‌ها [English]

  • Chlorophyll
  • Fresh weight
  • Flower number
  • Leaf area
1- Ahmad M.S.A., Ali Q., Ashraf M., Haider M. Z. and Abbas Q. 2009. Involvement of polyamines, abscisic acid and anti-oxidative enzymes in adaptation of Blue Panicgrass (Panicum antidotale Retz.) to saline environments. Environmental and Experimental Botany, 66: 409-417.
2- Armitage A. M. 1985. Petunia. PP. 41-46. In: Halevy, A. H. (Ed.), Handbook of flowering, CRC Press, Boca Raton, Florida. 52-59.
3- Asli S. and Neumann PM. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticlescan inhibit leaf growth and transpiration via physical effects on root water transport. Plant cell environ, 32:577-584.
4- Bayat H, Namati S, Tehranifar A, Vahdati N, Selahvarzi Y. 2012. Effects of salicylic acid on growth and ornamental characteristics of Persian petunia (Petunia hybrida) under salt stress. Journal of Greenhouse Culture Science and Technology, 3 (11) :43-51
5- Carvajal M. and Alcaraz C. F. 1998. Why titanium is a beneficial element for plants. Journal of Plant Nutrition, 21(4): 655-664.
6- Carvajal M., Martinez-Sanchez F. and Alcaraz C. F. 1994. Effect of Ti (IV) on some physiological activity indicators of Capsicum annuum L. plants Horticulture Science, 69: 427-432.
7- Chao S. H. L. and Choi H. S. 2005. Method for Providing Enhanced Photosynthesis. Korea Research Institute of Chemical Technology, Jeonju, South Korea, 10 p
8- Chinnamuthu C.R. and Murugesa Boopathi P. 2009. Nanotechnology and Agroecosystem. The Madras Agricultural Journal, 96 (1-6): 17-31.
9- Cramer G. R., Lauchl J., Lauchl A. and Epstein E. 1987. Influx of Na, K and Ca into roots of salt stressed cotton seedlings: Effects of Supplemental Ca. Plant Physiology, 83, 510-516.
10- Dadashi MR, Majidi Hervan I. and Noorinia AA., 2007. Evalution different genotypes of barley to salinity stress. Journal of Agricultural Science, 1: 181-190.
11- Dere S., Gunes T. and Sivaci R. 1998. Spectrophotometric determination of chlorophyll - a, b and total carotenoid contents of some algae species using different solvents. Journal of Botany, 22: 13-17.
12- El-Fouly M. M., Mobarak Z. M. and Salama Z. A. 2011. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. African Journal of Plant Science, 5, 314- 322.
13- Feizi H, Rezvani Moghadam P, Fotovat A, Shah Tahmasbi N. 2011. Reaction of wheat seedto different concentrations of titanium dioxide nanoparticles in comparison with nonnano-particles. Proc. Of 2th congress on science and technology seed. Nov. 4-5,Mashhad, Iran. pp. 565-569
14- Fornes F., Maria Belda R., Carrion C., Noguera V., Garcia-Agustin P. and Abad M. 2007. Pre-conditioning germination of lettuce seeds. Water Air and Soil Pollution, 97:143-148
15- Fornes F., Maria Belda R., Carrion C., Noguera V., Garcia-Agustin P. and Abad M. 2007. Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113:52-59.
16- Haghighi M., and Daneshmand B. 2012. Comparison of titanium and titanium nanoparticles on growth and photosynthesis of tomato in hydroponic system. Science and Technology of greenhouse cultures, 4(13): 73-79.
17- Hawthorne J, Musante C, Sinha S K. and White J C. 2012. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita Pepo. Inter. Journal of Phytoremediation, 14: 429-442
18- Inman O. L., Barclay G. and Hubbard M. 1935. Effect of titanium chloride on the formation of chlorophyll in Zea mays. Journal of Plant Physiology, 10: 821-822.
19- Klancnik K, Drobne D, Valant J. and Dolenc Koce J. 2011. Use of a modified Allium test with nanoTio2. Ecotoxicology and Environmental Safety.74:85-92.
20- Kumar P. A. and Bandhu D. A. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 324-349.
21- Lee W, An Y, Yoon H. and Kweon H. 2008. Toxicity and bioavailability of copper nanoparticles terrestrial plants smung bean (Phaseolusra radiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles. Environmental Toxicology and Chemistry; 27(9) :1915 – 21.
22- Lu C. M., Zhang C. Y., Wen J. Q., Wu G. R. and Tao M. X. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21: 168-172.
23- Lu CM, Zhang CY, Wen JQ, Wu GR. and Tao MX. 2002. Research of the effect of nanometer Materials on germination and grow the enhancement of Glycine max and its Mechanisms. Soybean Science; 21:168– 72
24- Lutts S., Kinet J. M. and Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Annals of Botany, 8: 389-398.
25- Martinez-Sanchez F., Gimenez J. L., Martinez-Canadas M. A., Pastor J. J. and Alcaraz C. F. 1990. Micronutrient composition in several portions of Capsicum plants and their relation with red fruit color. Acta Aliment, 19:177-185.
26- Martinez-Sanchez F., Nunez M., Amoros A., Gimenez J. L. and Alcaraz C. F. 1993. Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L. fruits. Journal Plant Nutrition, 16(5): 975-981.
27- Mojalali h. 1995. Salt and sodium soils (principles, dynamics, modeling). 284 p.
28- Owolade O. F., Ogunleti D. O. and Adenekan M. O. 2008. Titanium dioxide affects diseases, development and yield of edible cowpea. Journal of Agricultural and Food Chemistry, 7(5): 2942-2947.
29- Pais I. 1983. The biological importance of titanium. Journal of Plant Nutrition, 6(1): 3-131.
30- Ram N., Verloo, M. and Cottenie A. 1983. Response of bean (Phaseolus vulgaris) to foliar spray of titanium. Journal of Plant and Soil, 73: 285-290.
31- Ruffini Castiglione M. and Cremonini R. 2009. Nanoparticles and higher plants. Caryologia. 2: 161-165.
32- Saberi S., Ghasimi hagh Z., Mostafavi sh. 2012. Impact and mechanisms of Nano Titanium Dioxide on physiological processes spinach. Second National Conference on Sustainable Agricultural Development healthy environment. 16 Page
33- Seeger, E. M., Baun A., Kästner M. and Trapp S. 2008. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments, 9(1): 46-53.
34- Shah V. and Belozerova I. 2009 Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds, Water, Air, and Soil Pollution, 197(1):143-148.
35- Swiader, J. M. 2000. Micronutrient fertilizer recommendation for vegetable crop, Hortic facts, pp 21-35.
36- Vasilevski G. 2003. Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, SPECIAL ISSUE 2003, 179–186.
37- Yang F, Hong F., You W., Liu C., Gao F., Wu C. and Yang P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Journal of Trace Elements Research, 110(2): 179-190.
38- Zheng L, Hong F, Lu S. and Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biological Trace Element Research, 105:83-91.